1. 背景介绍
1.1 问题由来
自计算机科学诞生以来,冯·诺依曼架构一直是计算机硬件设计和软件开发的基础。然而,随着人工智能(AI)技术的发展,冯·诺依曼架构的局限性逐渐显现,成为AI时代面临的重要挑战。冯·诺依曼架构的核心特点是:
- 存储和计算分离:数据存储在主存储器中,而计算资源集中在中央处理器(CPU)上。数据需要在CPU和存储器之间频繁地读写,造成性能瓶颈。
- 顺序执行:指令和数据按顺序读取,无法并行处理,导致效率低下。
- 单通道数据流动:数据流单向流动,无法同时读取和写入,限制了吞吐量。
这些局限性在大数据、高并行性、实时性等需求下愈发突出。为了应对这些挑战,研究人员和工程师不断探索新的计算架构和编程模型,以适应AI时代的需求。
1.2 问题核心关键点
冯·诺依曼架构的局限性主要体现在以下几个方面:
- 数据流方向单一,无法支持大数据、多任务并行。
- 计算与存储分离,导致数据读写速度慢,限制了系统吞吐量。
- 顺序执行方式,无法充分利用多核CPU和GPU的并行能力。
这些问题在大数据处理、深度学习、图形渲染等AI领域的应用中尤为明显。为了提升AI应用的性能和效