1. 背景介绍
1.1 问题由来
随着人工智能技术的快速发展,对话系统逐渐成为信息获取和交互的重要方式。传统的规则匹配或模板生成对话系统往往缺乏灵活性和人性化,难以应对复杂的用户需求。大模型问答系统(Chatbot)基于深度学习技术,可以处理更加复杂的对话场景,提供更自然、多样化的交互体验。
近年来,大语言模型(Large Language Models, LLMs)在对话系统中的应用取得了显著进展,尤其是在GPT-3等大规模预训练模型的驱动下,大模型问答系统展现出了强大的自然语言处理能力。但在大模型问答系统的构建过程中,仍有许多技术挑战需要克服,尤其是如何在微调、优化、部署等环节实现更高的自然互动效果。
1.2 问题核心关键点
大模型问答系统的核心在于如何通过大模型实现自然、流畅的对话交互。这涉及到以下几个关键点:
- 对话策略:确定对话的逻辑结构,如轮次、上下文、结束条件等。
- 语境理解:理解和捕捉用户输入中的语境信息,如上下文、意图、实体等。
- 响应生成:根据对话历史和当前语境生成合适的响应,保证对话的自然性和相关性。
- 交互优化