1. 背景介绍
随着深度学习技术的不断进步,基于预训练模型的基础模型在各个垂直领域的应用取得了显著成效。这些基础模型通过在大规模无标签数据上进行自监督学习,学习到丰富的语言知识和常识,具有强大的语言理解和生成能力。然而,在特定领域,这些通用基础模型往往难以直接应用,需要通过微调、迁移学习等技术进一步适配特定任务。本文聚焦于基础模型的垂直领域应用,探讨其在各个垂直领域中的具体应用方法和实践案例。
1.1 问题由来
在自然语言处理(NLP)领域,基于预训练模型的基础模型如BERT、GPT等已经展现了强大的通用能力。然而,这些模型在特定垂直领域的应用效果往往不尽如人意。例如,在医疗领域,医疗数据通常涉及专业术语和复杂的临床信息,通用模型难以准确理解和处理;在金融领域,金融数据的特性和复杂性也与通用模型存在较大差异。因此,如何在垂直领域中高效利用这些基础模型,提升模型在该领域的表现,成为了当前研究的热点问题。
1.2 问题核心关键点
基础模型在垂直领域应用的核心关键点包括:
- 数据适配:垂直领域的数据通常具有特定属性和格式,如何适应这些数据是基础模型应用的第一步。
- 任务适配:基础模型