1. 背景介绍
1.1 问题由来
在AI和大数据飞速发展的今天,深度学习模型在各个领域的应用越来越广泛。以NLP为例,语言模型如BERT、GPT-3等已经在文本分类、情感分析、机器翻译等任务上取得了显著的进展。然而,这些模型基于海量的无标签数据进行预训练,缺乏对数据本身的价值判断,很容易学习到数据中的一些有害信息。这些信息可能包括种族歧视、性别偏见、恶意内容等,对社会造成严重的负面影响。
1.2 问题核心关键点
虚假信息问题主要表现在以下两个方面:
- 有害信息的传播。基础模型在训练过程中,会学习到训练数据中的有害信息,并在实际应用中传播出去,对社会造成负面影响。例如,在社交媒体上,GPT等模型被广泛用于生成和传播虚假信息。
- 有害信息模型的鲁棒性。基础模型容易受到有害信息的影响,导致模型输出结果不正确,从而误导决策者。例如,在司法、医疗等重要领域,有害信息模型的错误输出可能导致严重后果。
这些问题引发了学界和业界的广泛关注。为了解决这些问题,许多研究者提出了各种方法,如对抗样本训练、模型蒸馏、模型融合等。然而,这些方法在实际应用中效果有限,需要进一步的深入研究。
1.3 问题研究意义
解决基础模型的虚假信息问