基于深度学习的机器人室内场景识别
关键词:深度学习,机器人,室内场景,计算机视觉,传感器融合,目标检测,决策制定
1. 背景介绍
1.1 问题由来
随着社会老龄化趋势的加剧,居家养老成为了一个越来越受关注的话题。如何让老年人在家中安全地生活,如何为他们提供便捷的日常服务,成为了技术研究的重要方向。其中,室内场景识别技术可以在家庭环境中提供关键的定位和导航功能,帮助老人在家中自主移动,并在紧急情况下及时得到救助。
传统的室内场景识别技术主要依靠传感器数据和经典图像处理算法,如霍夫变换、边缘检测等,但这些方法往往需要手动设计特征提取器,难以适应复杂的室内环境变化,并且计算成本较高。随着深度学习技术的突破,特别是卷积神经网络(CNN)的广泛应用,室内场景识别技术得到了极大的提升。
深度学习方法,尤其是卷积神经网络,可以从原始图像数据中自动学习特征,具有很强的鲁棒性和泛化能力,能够在不同的光照、视角和噪声条件下稳定工作。因此,本文将探讨基于深度学习的机器人室内场景识别方法,以期为老年人的家庭智能化生活提供可靠的技术支持。