Transformer大模型实战 将预训练的SpanBERT用于问答任务
关键词:Transformer, SpanBERT, 问答任务, 预训练, 微调, 自然语言处理, NLP, 机器学习
1. 背景介绍
问答系统(Question Answering, QA)是自然语言处理(Natural Language Processing, NLP)领域的一个重要分支,旨在让计算机能够理解和回答用户的问题。近年来,随着深度学习技术的快速发展,基于深度学习的问答系统取得了显著的进步。其中,预训练语言模型(Pre-trained Language Model)的引入,使得问答系统的性能得到了质的提升。本文将详细介绍如何将预训练的SpanBERT模型应用于问答任务,并通过实战项目来展示其应用效果。
1.1 问答系统的挑战
传统的问答系统主要基于规则或模板匹配的方式,这些方法往往依赖于大量人工制定的规则,难以适应复杂多变的问题场景。随着深度学习的发展,基于神经网络的方法逐渐成为问答系统的主流。然而,早期基于神经网络的方法在问答任务上仍然面临着以下挑战:
- 语义理解能力有限:早