- 元学习
- 神经架构搜索
- NAS
- 遗传算法
- 强化学习
- 演化算法
一切皆是映射:元学习中的神经架构搜索(NAS)
在人工智能的广阔领域中,神经架构搜索(Neural Architecture Search,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、挑战以及未来发展趋势。
1. 背景介绍
1.1 问题的由来
随着深度学习在各个领域的广泛应用,如何设计高效的神经网络架构成为了一个关键问题。传统的神经网络架构设计往往依赖于领域专家的经验和直觉,这种方法既耗时又费力,且难以保证最优解。NAS的出现,正是为了解决这一问题。
1.2 研究现状
近年来,NAS领域取得了显著的进展。研究者们提出了多种NAS方法,包括基于强化学习、遗传算法、演化算法等方法。这些方法各有优缺点,但都旨在通过自动化搜索