Spring Data Cassandra 助力后端数据持久化
关键词:Spring Data Cassandra,后端数据持久化,NoSQL数据库,数据访问,分布式系统
摘要:本文聚焦于Spring Data Cassandra在后端数据持久化方面的应用。详细介绍了Spring Data Cassandra的核心概念、算法原理、数学模型,通过项目实战展示其具体使用方法,探讨了实际应用场景。同时推荐了相关的学习资源、开发工具框架和论文著作,最后总结了其未来发展趋势与挑战,并给出常见问题解答和扩展阅读参考资料,旨在帮助开发者深入理解和掌握Spring Data Cassandra,提升后端数据持久化的效率和质量。
1. 背景介绍
1.1 目的和范围
在当今的软件开发领域,后端数据持久化是一个至关重要的环节。随着数据量的不断增长和业务需求的日益复杂,传统的关系型数据库在某些场景下已经难以满足性能和扩展性的要求。Spring Data Cassandra作为Spring Data家族的一员,为开发者提供了一种便捷、高效的方式来使用Cassandra这个高性能的分布式NoSQL数据库进行数据持久化。本文的目的就是深入探讨Spring Data Cassandra的各个方面,包括其核心概念、使用方法、实际应用场景等,帮助开发者更好地利用这一技术解决后端数据持久化问题。本文的范围涵盖了Spring Data Cassandra的基本原理、操作步骤、项目实战以及相关的学习资源和工具推荐等内容。
1.2 预期读者
本文主要面向有一定Java开发基础,对数据库和数据持久化有一定了解的开发者。无论是初学者希望了解Spring Data Cassandra的基本使用,还是有经验的开发者想要深入掌握其高级特性和优化技巧,都可以从本文中获得有价值的信息。同时,对于正在寻找合适的后端数据持久化解决方案的架构师和技术决策者,本文也能提供一些参考和思路。
1.3 文档结构概述
本文将按照以下结构进行组织:
- 背景介绍:阐述本文的目的、预期读者和文档结构,并对相关术语进行解释。
- 核心概念与联系:介绍Spring Data Cassandra的核心概念,包括Cassandra数据库的基本原理和Spring Data Cassandra的架构,同时给出相应的文本示意图和Mermaid流程图。
- 核心算法原理 & 具体操作步骤:详细讲解Spring Data Cassandra的核心算法原理,并通过Python源代码进行说明,同时给出具体的操作步骤。
- 数学模型和公式 & 详细讲解 & 举例说明:介绍与Spring Data Cassandra相关的数学模型和公式,并通过具体的例子进行详细讲解。
- 项目实战:代码实际案例和详细解释说明:通过一个具体的项目实战,展示Spring Data Cassandra的使用方法,包括开发环境搭建、源代码实现和代码解读。
- 实际应用场景:探讨Spring Data Cassandra在不同领域的实际应用场景。
- 工具和资源推荐:推荐一些学习Spring Data Cassandra的相关资源,包括书籍、在线课程、技术博客和网站,以及开发工具框架和相关论文著作。
- 总结:未来发展趋势与挑战:总结Spring Data Cassandra的发展趋势和面临的挑战。
- 附录:常见问题与解答:解答一些关于Spring Data Cassandra的常见问题。
- 扩展阅读 & 参考资料:提供一些扩展阅读的建议和参考资料。
1.4 术语表
1.4.1 核心术语定义
- Spring Data Cassandra:Spring Data家族的一部分,它提供了与Cassandra数据库进行交互的抽象层,简化了开发者使用Cassandra进行数据持久化的过程。
- Cassandra:一个高度可扩展的分布式NoSQL数据库,具有高可用性、高性能和容错性等特点。
- 数据持久化:将数据从内存中保存到持久存储设备(如磁盘)的过程,以确保数据在系统重启或故障后仍然可用。
- 实体(Entity):在Spring Data Cassandra中,实体是指映射到Cassandra表的Java对象。
- 仓库(Repository):Spring Data提供的一种接口,用于定义数据访问方法,开发者可以通过继承该接口来实现对数据库的增删改查操作。
1.4.2 相关概念解释
- 分布式数据库:将数据分散存储在多个节点上的数据库系统,通过网络进行数据的管理和访问。分布式数据库可以提高系统的可扩展性和容错性。
- NoSQL数据库:非关系型数据库的统称,与传统的关系型数据库相比,NoSQL数据库具有更高的可扩展性、更好的性能和更灵活的数据模型。
- 数据模型:指数据库中数据的组织和存储方式,不同的数据库有不同的数据模型,如关系型数据库使用表结构,而Cassandra使用列族和行的结构。
1.4.3 缩略词列表
- JPA:Java Persistence API,Java持久化API,是JavaEE平台提供的一种用于对象关系映射的标准。
- CRUD:Create、Read、Update、Delete的缩写,即增删改查操作,是数据库操作的基本功能。
- RPC:Remote Procedure Call,远程过程调用,是一种允许程序调用位于其他计算机上的过程的技术。
2. 核心概念与联系
2.1 Cassandra数据库基本原理
Cassandra是一个分布式的、去中心化的NoSQL数据库,它采用了一种称为“分区复制”的数据存储模型。在Cassandra中,数据被组织成列族(Column Family),每个列族可以包含多个行(Row),每行由一个唯一的行键(Row Key)标识。每行可以包含多个列(Column),列可以动态添加和删除。
Cassandra的分布式架构基于对等网络(P2P),数据被分散存储在多个节点上。每个节点都可以处理读写请求,并且可以自动进行数据的复制和修复。Cassandra使用一致性哈希算法将数据分布到不同的节点上,以确保数据的均匀分布和高可用性。
2.2 Spring Data Cassandra架构
Spring Data Cassandra为开发者提供了一个抽象层,使得开发者可以使用Spring的编程模型来与Cassandra数据库进行交互。它主要包括以下几个核心组件:
- 实体映射:Spring Data Cassandra通过注解将Java对象映射到Cassandra表。开发者可以使用
@Table
注解指定实体对应的表名,使用@Column
注解指定实体属性对应的列名。 - 仓库接口:Spring Data提供了
CrudRepository
接口,开发者可以通过继承该接口来定义数据访问方法。Spring Data会自动根据方法名生成对应的SQL语句,从而简化了数据访问的代码。 - 模板类:Spring Data Cassandra还提供了
CassandraTemplate
类,用于执行更复杂的数据库操作。开发者可以使用该类来执行自定义的CQL(Cassandra Query Language)语句。
2.3 文本示意图
以下是Spring Data Cassandra的架构示意图:
+---------------------+
| Spring Boot App |
|---------------------|
| @Entity Classes |
| @Repository Interfaces |
|---------------------|
| Spring Data Cassandra |
|---------------------|
| Cassandra Driver |
+---------------------+
| Cassandra DB |
+---------------------+
2.4 Mermaid流程图
graph LR
A[Spring Boot App] --> B[Spring Data Cassandra]
B --> C[Cassandra Driver]
C --> D[Cassandra DB]
A --> E[@Entity Classes]
A --> F[@Repository Interfaces]
B --> E
B --> F
3. 核心算法原理 & 具体操作步骤
3.1 核心算法原理
Spring Data Cassandra的核心算法原理主要涉及到数据的映射和查询。当开发者定义一个实体类并使用@Table
和@Column
注解进行映射时,Spring Data Cassandra会根据这些注解信息将实体对象转换为Cassandra表中的行和列。
在查询方面,Spring Data Cassandra采用了方法名解析的方式。当开发者在仓库接口中定义一个方法时,Spring Data会根据方法名自动解析出对应的查询条件,并生成相应的CQL语句。例如,方法名findByUsername
会被解析为根据username
字段进行查询的CQL语句。
3.2 具体操作步骤
3.2.1 添加依赖
首先,在pom.xml
文件中添加Spring Data Cassandra的依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-cassandra</artifactId>
</dependency>
3.2.2 配置Cassandra连接信息
在application.properties
文件中配置Cassandra的连接信息:
spring.data.cassandra.contact-points=127.0.0.1
spring.data.cassandra.port=9042
spring.data.cassandra.keyspace-name=my_keyspace
3.2.3 定义实体类
创建一个Java类,并使用@Table
和@Column
注解进行映射:
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;
@Table("users")
public class User {
@PrimaryKey
private String id;
@Column("username")
private String username;
@Column("email")
private String email;
// 构造函数、Getter和Setter方法
public User() {
}
public User(String id, String username, String email) {
this.id = id;
this.username = username;
this.email = email;
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getUsername() {
return username;
}
public void setUsername(String username) {
this.username = username;
}
public String getEmail() {
return email;
}
public void setEmail(String email) {
this.email = email;
}
}
3.2.4 定义仓库接口
创建一个接口,并继承CrudRepository
接口:
import org.springframework.data.cassandra.repository.CrudRepository;
public interface UserRepository extends CrudRepository<User, String> {
User findByUsername(String username);
}
3.2.5 使用仓库接口进行数据操作
在服务类中注入UserRepository
,并使用它进行数据操作:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.Optional;
@Service
public class UserService {
@Autowired
private UserRepository userRepository;
public User saveUser(User user) {
return userRepository.save(user);
}
public Optional<User> getUserById(String id) {
return userRepository.findById(id);
}
public User getUserByUsername(String username) {
return userRepository.findByUsername(username);
}
}
3.3 Python源代码示例
虽然Spring Data Cassandra主要用于Java开发,但我们可以使用Python的cassandra-driver
库来展示类似的操作原理。以下是一个简单的Python示例:
from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
# 连接到Cassandra
auth_provider = PlainTextAuthProvider(username='cassandra', password='cassandra')
cluster = Cluster(['127.0.0.1'], auth_provider=auth_provider)
session = cluster.connect('my_keyspace')
# 创建表
session.execute("""
CREATE TABLE IF NOT EXISTS users (
id text PRIMARY KEY,
username text,
email text
)
""")
# 插入数据
session.execute("INSERT INTO users (id, username, email) VALUES (%s, %s, %s)", ('1', 'john_doe', 'john@example.com'))
# 查询数据
result = session.execute("SELECT * FROM users WHERE id = %s", ('1',))
for row in result:
print(row.id, row.username, row.email)
# 关闭连接
cluster.shutdown()
4. 数学模型和公式 & 详细讲解 & 举例说明
4.1 一致性哈希算法
一致性哈希算法是Cassandra用于数据分布的核心算法。它的主要思想是将整个哈希空间(通常是一个圆环)划分为多个虚拟节点,每个节点对应一个哈希值。数据的键也通过哈希函数映射到这个圆环上,数据会被存储在顺时针方向上第一个遇到的虚拟节点对应的物理节点上。
一致性哈希算法的公式可以表示为:
H
(
k
e
y
)
=
h
a
s
h
(
k
e
y
)
m
o
d
M
H(key) = hash(key) \mod M
H(key)=hash(key)modM
其中,
H
(
k
e
y
)
H(key)
H(key) 是键
k
e
y
key
key 对应的哈希值,
h
a
s
h
(
k
e
y
)
hash(key)
hash(key) 是哈希函数对键
k
e
y
key
key 计算得到的哈希值,
M
M
M 是哈希空间的大小。
4.2 举例说明
假设我们有一个哈希空间大小为 M = 100 M = 100 M=100,有三个物理节点 A A A、 B B B、 C C C,它们对应的虚拟节点哈希值分别为 20 20 20、 50 50 50、 80 80 80。现在有一个数据键 k e y = " d a t a 1 " key = "data1" key="data1",经过哈希函数计算得到的哈希值为 h a s h ( " d a t a 1 " ) = 30 hash("data1") = 30 hash("data1")=30。
根据一致性哈希算法, H ( " d a t a 1 " ) = 30 m o d 100 = 30 H("data1") = 30 \mod 100 = 30 H("data1")=30mod100=30。在圆环上,从 30 30 30 开始顺时针方向第一个遇到的虚拟节点是 50 50 50,对应的物理节点是 B B B,因此 d a t a 1 data1 data1 会被存储在节点 B B B 上。
4.3 数据复制因子
在Cassandra中,数据复制因子(Replication Factor)决定了每个数据副本的数量。例如,如果复制因子为 3 3 3,则每个数据会有三个副本,分别存储在不同的节点上。
假设我们有一个包含 n n n 个节点的集群,复制因子为 R F RF RF。对于每个数据,它会被复制 R F RF RF 次,并存储在顺时针方向上的 R F RF RF 个节点上。
4.4 举例说明
假设我们有一个包含 5 5 5 个节点的集群,节点编号为 N 1 N_1 N1、 N 2 N_2 N2、 N 3 N_3 N3、 N 4 N_4 N4、 N 5 N_5 N5,复制因子为 3 3 3。对于一个数据键 k e y key key,它被映射到节点 N 2 N_2 N2 上。那么该数据的副本会被存储在 N 2 N_2 N2、 N 3 N_3 N3、 N 4 N_4 N4 这三个节点上。
5. 项目实战:代码实际案例和详细解释说明
5.1 开发环境搭建
5.1.1 安装Java和Maven
首先,确保你已经安装了Java 8或更高版本,以及Maven。可以通过以下命令检查Java和Maven的版本:
java -version
mvn -version
5.1.2 安装Cassandra
可以从Cassandra官方网站下载并安装Cassandra。安装完成后,启动Cassandra服务:
sudo service cassandra start
5.1.3 创建Spring Boot项目
使用Spring Initializr(https://start.spring.io/)创建一个新的Spring Boot项目,添加Spring Data Cassandra
依赖。
5.2 源代码详细实现和代码解读
5.2.1 实体类
import org.springframework.data.cassandra.core.mapping.Column;
import org.springframework.data.cassandra.core.mapping.PrimaryKey;
import org.springframework.data.cassandra.core.mapping.Table;
@Table("products")
public class Product {
@PrimaryKey
private String id;
@Column("name")
private String name;
@Column("price")
private double price;
public Product() {
}
public Product(String id, String name, double price) {
this.id = id;
this.name = name;
this.price = price;
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public double getPrice() {
return price;
}
public void setPrice(double price) {
this.price = price;
}
}
代码解读:
@Table("products")
:指定该实体类映射到Cassandra中的products
表。@PrimaryKey
:指定id
字段为表的主键。@Column("name")
和@Column("price")
:指定name
和price
字段分别映射到表中的name
和price
列。
5.2.2 仓库接口
import org.springframework.data.cassandra.repository.CrudRepository;
public interface ProductRepository extends CrudRepository<Product, String> {
Product findByName(String name);
}
代码解读:
CrudRepository<Product, String>
:继承CrudRepository
接口,指定实体类为Product
,主键类型为String
。Product findByName(String name)
:定义一个根据产品名称查询产品的方法。
5.2.3 服务类
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.Optional;
@Service
public class ProductService {
@Autowired
private ProductRepository productRepository;
public Product saveProduct(Product product) {
return productRepository.save(product);
}
public Optional<Product> getProductById(String id) {
return productRepository.findById(id);
}
public Product getProductByName(String name) {
return productRepository.findByName(name);
}
}
代码解读:
@Service
:将该类标记为服务类,由Spring容器进行管理。@Autowired
:自动注入ProductRepository
实例。saveProduct
方法:调用productRepository
的save
方法保存产品信息。getProductById
方法:调用productRepository
的findById
方法根据产品ID查询产品信息。getProductByName
方法:调用productRepository
的findByName
方法根据产品名称查询产品信息。
5.2.4 控制器类
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
import java.util.Optional;
@RestController
@RequestMapping("/products")
public class ProductController {
@Autowired
private ProductService productService;
@PostMapping
public Product saveProduct(@RequestBody Product product) {
return productService.saveProduct(product);
}
@GetMapping("/{id}")
public Optional<Product> getProductById(@PathVariable String id) {
return productService.getProductById(id);
}
@GetMapping("/name/{name}")
public Product getProductByName(@PathVariable String name) {
return productService.getProductByName(name);
}
}
代码解读:
@RestController
:将该类标记为RESTful控制器。@RequestMapping("/products")
:指定该控制器处理的请求路径前缀为/products
。@PostMapping
:处理POST请求,用于保存产品信息。@GetMapping("/{id}")
:处理GET请求,根据产品ID查询产品信息。@GetMapping("/name/{name}")
:处理GET请求,根据产品名称查询产品信息。
5.3 代码解读与分析
通过以上代码,我们实现了一个简单的Spring Boot应用,使用Spring Data Cassandra对产品信息进行持久化操作。整个项目的架构清晰,通过实体类、仓库接口、服务类和控制器类的分层设计,实现了数据访问和业务逻辑的分离。
在实体类中,使用注解将Java对象映射到Cassandra表,方便数据的存储和读取。仓库接口继承CrudRepository
接口,利用Spring Data的方法名解析机制,自动生成查询语句,减少了开发者编写SQL语句的工作量。服务类负责处理业务逻辑,调用仓库接口的方法进行数据操作。控制器类负责接收HTTP请求,调用服务类的方法处理请求,并返回响应结果。
6. 实际应用场景
6.1 日志存储
在分布式系统中,会产生大量的日志数据。Spring Data Cassandra可以用于存储这些日志数据,利用Cassandra的高可扩展性和高性能,能够高效地处理海量日志的写入和查询。例如,电商平台的交易日志、用户行为日志等都可以使用Spring Data Cassandra进行存储。
6.2 物联网数据存储
物联网设备会产生大量的实时数据,如传感器数据、设备状态数据等。Spring Data Cassandra可以满足物联网数据的高并发写入和快速查询需求。通过将数据存储在Cassandra中,可以方便地对物联网数据进行分析和挖掘。
6.3 社交网络数据存储
社交网络平台会产生大量的用户数据、关系数据和动态数据。Spring Data Cassandra可以用于存储这些数据,利用其分布式架构和灵活的数据模型,能够高效地处理社交网络数据的存储和查询。例如,用户的好友关系、动态发布、点赞评论等数据都可以使用Spring Data Cassandra进行存储。
6.4 缓存数据存储
在一些应用场景中,需要使用缓存来提高系统的性能。Spring Data Cassandra可以作为缓存数据的存储介质,利用其快速读写的特点,能够快速地获取和更新缓存数据。例如,电商平台的商品信息缓存、用户会话缓存等都可以使用Spring Data Cassandra进行存储。
7. 工具和资源推荐
7.1 学习资源推荐
7.1.1 书籍推荐
- 《Cassandra: The Definitive Guide》:这本书是Cassandra的权威指南,详细介绍了Cassandra的原理、架构、配置和使用方法。
- 《Spring in Action》:虽然不是专门针对Spring Data Cassandra的书籍,但它全面介绍了Spring框架的各个方面,包括Spring Data模块,对于理解Spring Data的编程模型有很大帮助。
7.1.2 在线课程
- Coursera上的“Big Data Analysis with Cassandra”:该课程介绍了Cassandra的基本概念和使用方法,以及如何使用Cassandra进行大数据分析。
- Udemy上的“Spring Data Cassandra for Beginners”:专门针对Spring Data Cassandra的入门课程,适合初学者学习。
7.1.3 技术博客和网站
- Cassandra官方文档(https://cassandra.apache.org/doc/latest/):提供了Cassandra的详细文档和教程。
- Spring官方文档(https://spring.io/projects/spring-data-cassandra):提供了Spring Data Cassandra的详细文档和示例代码。
- Baeldung(https://www.baeldung.com/spring-data-cassandra-tutorial):有很多关于Spring Data Cassandra的教程和文章。
7.2 开发工具框架推荐
7.2.1 IDE和编辑器
- IntelliJ IDEA:功能强大的Java IDE,支持Spring Boot和Spring Data Cassandra的开发。
- Eclipse:经典的Java开发工具,也可以用于Spring Data Cassandra的开发。
- Visual Studio Code:轻量级的代码编辑器,安装相关插件后可以进行Java和Spring Boot开发。
7.2.2 调试和性能分析工具
- DataStax DevCenter:用于管理和查询Cassandra数据库的可视化工具,可以方便地进行数据的插入、查询和修改操作。
- JProfiler:Java性能分析工具,可以帮助开发者分析Spring Data Cassandra应用的性能瓶颈。
7.2.3 相关框架和库
- Spring Boot:简化了Spring应用的开发过程,与Spring Data Cassandra集成良好。
- Apache Cassandra Java Driver:官方提供的Java驱动,用于与Cassandra数据库进行交互。
7.3 相关论文著作推荐
7.3.1 经典论文
- “Dynamo: Amazon’s Highly Available Key-Value Store”:介绍了Amazon Dynamo的设计思想和架构,Cassandra在设计上受到了Dynamo的影响。
- “Bigtable: A Distributed Storage System for Structured Data”:介绍了Google Bigtable的设计和实现,对分布式数据库的发展有重要影响。
7.3.2 最新研究成果
- 可以关注ACM SIGMOD、VLDB等数据库领域的顶级会议,了解关于Cassandra和Spring Data Cassandra的最新研究成果。
7.3.3 应用案例分析
- 可以参考一些大型互联网公司的技术博客,了解他们在实际项目中使用Spring Data Cassandra的经验和案例。
8. 总结:未来发展趋势与挑战
8.1 未来发展趋势
- 与云服务的深度融合:随着云计算的发展,Spring Data Cassandra将与云服务提供商(如AWS、Azure、Google Cloud等)进行更深度的融合,提供更便捷的云部署和管理方式。
- 支持更多的数据类型和功能:未来,Spring Data Cassandra可能会支持更多的数据类型和功能,如地理空间数据、全文搜索等,以满足更多的应用场景需求。
- 与其他技术的集成:Spring Data Cassandra可能会与其他大数据技术(如Hadoop、Spark等)和人工智能技术进行更紧密的集成,实现数据的分析和挖掘。
8.2 挑战
- 数据一致性管理:在分布式环境下,保证数据的一致性是一个挑战。Cassandra采用了最终一致性模型,在某些场景下可能无法满足严格的一致性要求。如何在保证性能的前提下,实现更好的数据一致性管理是一个需要解决的问题。
- 运维和管理复杂度:随着集群规模的扩大,Cassandra的运维和管理复杂度也会增加。如何有效地监控和管理Cassandra集群,保证系统的高可用性和性能是一个挑战。
- 安全问题:在存储敏感数据时,安全问题是一个重要的考虑因素。如何保证Spring Data Cassandra应用的数据安全,防止数据泄露和攻击是一个需要解决的问题。
9. 附录:常见问题与解答
9.1 如何配置Spring Data Cassandra的连接池?
可以在application.properties
文件中配置连接池相关参数,例如:
spring.data.cassandra.pool.max-connections-per-host=10
spring.data.cassandra.pool.min-connections-per-host=5
9.2 Spring Data Cassandra支持事务吗?
Cassandra本身不支持传统的ACID事务,但Spring Data Cassandra可以通过轻量级事务(Lightweight Transactions)来实现一些简单的事务操作。轻量级事务可以保证数据的一致性,但性能相对较低。
9.3 如何处理Cassandra集群中的数据迁移和升级?
可以使用Cassandra提供的工具(如nodetool
)进行数据迁移和升级。在进行数据迁移和升级时,需要注意数据的一致性和可用性,避免数据丢失和系统故障。
9.4 如何优化Spring Data Cassandra的性能?
可以从以下几个方面进行性能优化:
- 合理设计数据模型,避免数据冗余和热点问题。
- 优化查询语句,避免全表扫描。
- 配置合适的连接池参数,提高连接效率。
- 对Cassandra集群进行合理的硬件配置和网络优化。
10. 扩展阅读 & 参考资料
10.1 扩展阅读
- 可以阅读Cassandra的官方文档和源代码,深入了解其内部实现原理。
- 学习分布式系统和数据库的相关知识,如分布式算法、数据存储模型等。
- 关注数据库领域的最新研究动态和技术趋势,了解Spring Data Cassandra的发展方向。
10.2 参考资料
- Cassandra官方网站:https://cassandra.apache.org/
- Spring Data Cassandra官方文档:https://spring.io/projects/spring-data-cassandra
- DataStax官方网站:https://www.datastax.com/
- 《NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence》
- 《Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems》