- 博客(6)
- 收藏
- 关注
原创 肺部分割--使用U-Net并结合可分离卷积
在医学影像分析领域,肺部分割是一项至关重要的任务,它有助于医生准确诊断肺部疾病,如肺癌、肺炎和慢性阻塞性肺病(COPD)等。近年来,随着深度学习技术的飞速发展,特别是卷积神经网络(CNN)的广泛应用,肺部CT图像的自动分割技术取得了显著进步。其中,UNet模型和可分离卷积(Separable Convolution)的结合,为实现高精度肺部分割提供了有力支持。本文将逐步分析一个使用UNet架构并结合可分离卷积(SeparableConv2D)进行肺部分割的模型,其Dice系数达到了0.93
2024-08-06 21:44:20
3344
1
原创 含并行连接的网络(GoogLeNet)
GoogLeNet,全称为GoogleNet,是谷歌工程师设计的一种深度神经网络结构,于2014年在ImageNet大规模视觉挑战赛(ILSVRC-2014)上取得了分类任务的冠军,并以6.65%的错误率力压其他模型。该模型的名字“GoogLeNet”是对早期由Yann LeCun设计的卷积神经网络LeNet的致敬。
2024-07-28 23:55:10
2020
原创 VGG模型
VGG(Visual Geometry Group)网络是由牛津大学的视觉几何组提出的一种深度卷积神经网络架构。它在2014年的ImageNet图像分类竞赛中取得了亚军的成绩,证明了通过增加网络深度可以显著提高图像识别的性能。VGG网络以其简洁和一致性的设计哲学,成为理解卷积神经网络(CNN)结构的基础之一。
2024-07-28 15:36:16
2181
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅