随着智能割草机的需求越来越大(特别是欧美地区),对边界识别的准确性要求越来越高;基于传统的边界识别技术都有比较大的局限性及性能提高空间;光谱相机在这个领域能有限填补传统边界识别的不足。
现有边界识别技术有改善的空间:
• 由于草地没有特别明显的形状特征,基于彩色图像的深度模型不能高准确度识别边界。
• 现有的边界识别方案中,预埋线方案虽然成本较低,但是用户使用之前需要在草地边界埋线,十分不便;而RTK等方案虽然使用方便,但是成本较高,割草机机器人成本居高不下。
智能光谱相机是低成本且有效的草地边界识
别方案:
• 绿色植物普遍含有叶绿素,而叶绿素有非常明显的光谱特征,可以利用光谱识别叶绿素丰度,进而识别草地的边界。
• 汇能感知的智能光谱相机可以方便地采集光谱图像,计算图像中每个像素的叶绿素丰度。
• 叶绿素丰度图再结合深度学习模型,可以有效识别草地边界以及其他物体。
原理:利用光谱检测物体中的叶绿素含量
更多案例 - 光谱图像(叶绿素丰度)
实景测试 - 光谱图像进行图像分割