模拟退火算法实战:求解大规模旅行商问题(TSP)

1. 问题背景与建模

1.1 任务描述

我方需从基地(坐标 ( 70 , 40 ) (70,40) (70,40))派出一架速度为1000公里/小时的飞机,侦察敌方100个目标点后返回。目标是找到最短巡航路径,最小化总飞行时间。该问题可抽象为旅行商问题(TSP),需访问102个节点(含起点和终点的重复编号)。

1.2 地理坐标与距离计算

敌方目标经纬度部分数据存储于表,如下:

经度 纬度 经度 纬度 经度 纬度 经度 纬度
53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.9348
56.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.4819
20.1050 15.4562 1.9451 0.2057 26.4951 22.1221 31.4847 8.9640

两点间距离通过大圆弧长计算。设两点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1,y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2)的直角坐标为:
A = ( R cos ⁡ x 1 cos ⁡ y 1 , R sin ⁡ x 1 cos ⁡ y 1 , R sin ⁡ y 1 ) B = ( R cos ⁡ x 2 cos ⁡ y 2 , R sin ⁡ x 2 cos ⁡ y 2 , R sin ⁡ y 2 ) \begin{aligned} A &= (R \cos x_1 \cos y_1, R \sin x_1 \cos y_1, R \sin y_1) \\ B &= (R \cos x_2 \cos y_2, R \sin x_2 \cos y_2, R \sin y_2) \end{aligned} AB=(Rcosx1cosy1,Rsinx1cosy1,Rsiny1)=(Rcosx2cosy2,Rsinx2cosy2,Rsiny2)
实际距离 d A B d_{AB} dAB为:
d A B = R arccos ⁡ [ cos ⁡ ( x 1 − x 2 ) cos ⁡ y 1 cos ⁡ y 2 + sin ⁡ y 1 sin ⁡ y 2 ] d_{AB} = R \arccos\left[ \cos(x_1 - x_2)\cos y_1 \cos y_2 + \sin y_1 \sin y_2 \right] dAB=Rarccos[cos(x1x2)cosy1cosy2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值