摘要:本文系统讲解存贮论中的确定性模型及其应用,涵盖基本概念、存贮策略与经济订购批量(EOQ)模型。通过需求率、订货费用等核心要素分析,推导不允许缺货/允许缺货场景下的最优订货周期、批量及最小总费用公式。强调存贮策略选择、费用优化及实际约束的影响。
关键词:存贮论 经济订购批量 确定性模型 订货策略 费用优化
1. 存贮论基本概念
存贮论(库存论)通过定量方法研究存贮系统的运行规律,旨在协调供需矛盾并制定最优存贮策略。其核心要素包括:
1.1 存贮问题三要素
- 需求率( D D D):单位时间内的需求量。
- 订货批量( Q Q Q):单次订货的数量。
- 订货间隔期( T T T):两次订货的时间间隔。
1.2 存贮费用构成
- 订货费( C D C_D CD):单次订货的固定成本,与订货量无关。
- 存贮费( C P C_P CP):单位物品在单位时间内的存贮成本。
- 短缺损失费( C S C_S CS):缺货导致的单位损失成本。
1.3 常见存贮策略
- 循环策略:每隔固定时间 t t t补充固定量 Q Q Q。
- ( t , S ) (t, S) (t,S)策略:每隔时间 t t t补足至最大存贮量 S S S。
- ( s , S ) (s, S) (s,S)策略:当存贮量 I ≤ s I \leq s I≤s时,补充至 S S S。
2. 无约束确定型存贮模型
2.1 模型一:不允许缺货,补充时间极短(EOQ模型)
假设条件
- 不允许缺货( C S → ∞ C_S \to \infty CS→∞),需求连续均匀(速率为 D D D)。
- 瞬时补货,订货费 C D C_D CD与批量无关,单位存贮费为 C P C_P CP。
存贮量变化
存贮量从 Q Q Q线性降至 0 0 0,平均存贮量为 1 2 Q \frac{1}{2}Q 21Q,周期 T = Q D T = \frac{Q}{D} T=DQ。
费用函数与最优解
单位时间总平均费用为:
C
=
1
2
C
P
Q
+
C
D
D
Q
C = \frac{1}{2}C_P Q + \frac{C_D D}{Q}
C=21CPQ+QCDD
对
Q
Q
Q求导并令导数为零,得到经济订购批量(EOQ)公式:
Q
∗
=
2
C
D
D
C
P
,
T
∗
=
2
C
D
C
P
D
,
C
∗
=
2
C
D
C
P
D
Q^* = \sqrt{\frac{2 C_D D}{C_P}}, \quad T^* = \sqrt{\frac{2 C_D}{C_P D}}, \quad C^* = \sqrt{2 C_D C_P D}
Q∗=CP2CDD,T∗=CPD2CD,C∗=2CDCPD
示例1:某商品日需求
D
=
100
D=100
D=100件,订货费
C
D
=
10
C_D=10
CD=10元,存贮费
C
P
=
0.005
C_P=0.005
CP=0.005元/件·天。
计算得:
Q
∗
=
2
×
10
×
100
0.005
=
632
件
,
T
∗
=
6.32
天
,
C
∗
=
3.16
元/天
Q^* = \sqrt{\frac{2 \times 10 \times 100}{0.005}} = 632 \, \text{件}, \quad T^* = 6.32 \, \text{天}, \quad C^* = 3.16 \, \text{元/天}
Q∗=0.0052×10×100=632件,T∗=6.32天,C∗=3.16元/天
2.2 模型二:允许缺货,补充时间较长(经济生产批量模型)
假设条件
- 允许缺货( C S C_S CS有限),补货速率 P > D P > D P>D,生产周期内分阶段补货与消耗。
存贮状态分析
- 缺货阶段: [ 0 , t 1 ] [0, t_1] [0,t1],缺货量 B = D t 1 B = D t_1 B=Dt1。
- 补货阶段: [ t 1 , t 3 ] [t_1, t_3] [t1,t3],生产速率 P P P,补足缺货并积累存贮至 A = ( P − D ) ( t 3 − t 2 ) A = (P - D)(t_3 - t_2) A=(P−D)(t3−t2)。
- 纯消耗阶段: [ t 3 , T ] [t_3, T] [t3,T],存贮量从 A A A降至 0 0 0。
费用函数与最优解
周期
T
T
T内总费用包括存贮费、缺货费和订货费。通过优化
T
T
T和
t
2
t_2
t2,得到:
T
∗
=
2
C
D
(
C
P
+
C
S
)
D
C
P
C
S
(
1
−
D
P
)
,
Q
∗
=
D
T
∗
T^* = \frac{2 C_D (C_P + C_S)}{D C_P C_S \left(1 - \frac{D}{P}\right)}, \quad Q^* = D T^*
T∗=DCPCS(1−PD)2CD(CP+CS),Q∗=DT∗
缺货补足时间
t
2
∗
=
C
P
C
P
+
C
S
T
∗
t_2^* = \frac{C_P}{C_P + C_S} T^*
t2∗=CP+CSCPT∗,最小费用
C
∗
=
2
C
D
T
∗
C^* = \frac{2 C_D}{T^*}
C∗=T∗2CD。
示例2:某公司年需求
D
=
4900
D=4900
D=4900件,生产速率
P
=
9800
P=9800
P=9800件/年,
C
P
=
1000
C_P=1000
CP=1000元/件·年,
C
S
=
2000
C_S=2000
CS=2000元/件·年,
C
D
=
500
C_D=500
CD=500元。
计算得:
T
∗
=
9
天
,
Q
∗
=
121
件
,
C
∗
=
40414.52
元/年
T^* = 9 \, \text{天}, \quad Q^* = 121 \, \text{件}, \quad C^* = 40414.52 \, \text{元/年}
T∗=9天,Q∗=121件,C∗=40414.52元/年
2.3 模型三:不允许缺货,补充时间较长
假设条件
- 不允许缺货( C S → ∞ C_S \to \infty CS→∞),生产速率 P > D P > D P>D,补货需一定时间。
存贮量变化
最高存贮量 A = ( 1 − D P ) Q A = \left(1 - \frac{D}{P}\right)Q A=(1−PD)Q,平均存贮量 1 2 A \frac{1}{2}A 21A。
费用函数与最优解
C
=
1
2
(
1
−
D
P
)
Q
C
P
+
C
D
D
Q
C = \frac{1}{2}\left(1 - \frac{D}{P}\right) Q C_P + \frac{C_D D}{Q}
C=21(1−PD)QCP+QCDD
最优生产批量:
Q
∗
=
2
C
D
D
C
P
(
1
−
D
P
)
Q^* = \sqrt{\frac{2 C_D D}{C_P \left(1 - \frac{D}{P}\right)}}
Q∗=CP(1−PD)2CDD
2.4 模型四:允许缺货,补充时间极短
假设条件
- 允许缺货( C S C_S CS有限),瞬时补货( P → ∞ P \to \infty P→∞)。
费用函数与最优解
平均总费用为:
C
=
C
P
(
Q
−
S
)
2
2
Q
+
C
D
D
Q
+
C
S
S
2
2
Q
C = \frac{C_P (Q - S)^2}{2 Q} + \frac{C_D D}{Q} + \frac{C_S S^2}{2 Q}
C=2QCP(Q−S)2+QCDD+2QCSS2
最优订货量和最大缺货量:
Q
∗
=
2
C
D
D
(
C
P
+
C
S
)
C
P
C
S
,
S
∗
=
C
P
C
P
+
C
S
Q
∗
Q^* = \sqrt{\frac{2 C_D D (C_P + C_S)}{C_P C_S}}, \quad S^* = \frac{C_P}{C_P + C_S} Q^*
Q∗=CPCS2CDD(CP+CS),S∗=CP+CSCPQ∗
2.5 模型五:经济订购批量折扣模型
核心思想
商品单价
K
(
Q
)
K(Q)
K(Q)随订货量分段变化,总费用包括存贮费、订货费和采购费:
C
=
1
2
Q
C
P
(
Q
)
+
C
D
D
Q
+
D
K
(
Q
)
C = \frac{1}{2} Q C_P(Q) + \frac{C_D D}{Q} + D K(Q)
C=21QCP(Q)+QCDD+DK(Q)
其中
C
P
(
Q
)
=
r
K
(
Q
)
C_P(Q) = r K(Q)
CP(Q)=rK(Q),
r
r
r为存贮费率。
求解步骤
- 计算各价格区间的 Q j ∗ = 2 C D D r K j Q_j^* = \sqrt{\frac{2 C_D D}{r K_j}} Qj∗=rKj2CDD。
- 验证 Q j ∗ Q_j^* Qj∗是否落在对应区间,选择使总费用最小的 Q ∗ Q^* Q∗。
结语
确定性存贮模型通过数学推导与优化,为库存管理提供了定量决策工具。实际应用中需结合约束条件(如资金、库容)调整模型,并借助LINGO等工具求解复杂场景。理解模型假设与核心公式,能够有效降低存贮成本,提升供应链效率。