存贮论:确定性模型与最优策略解析

摘要:本文系统讲解存贮论中的确定性模型及其应用,涵盖基本概念、存贮策略与经济订购批量(EOQ)模型。通过需求率、订货费用等核心要素分析,推导不允许缺货/允许缺货场景下的最优订货周期、批量及最小总费用公式。强调存贮策略选择、费用优化及实际约束的影响。
关键词:存贮论 经济订购批量 确定性模型 订货策略 费用优化


1. 存贮论基本概念

存贮论(库存论)通过定量方法研究存贮系统的运行规律,旨在协调供需矛盾并制定最优存贮策略。其核心要素包括:

1.1 存贮问题三要素

  1. 需求率( D D D:单位时间内的需求量。
  2. 订货批量( Q Q Q:单次订货的数量。
  3. 订货间隔期( T T T:两次订货的时间间隔。

1.2 存贮费用构成

  1. 订货费( C D C_D CD:单次订货的固定成本,与订货量无关。
  2. 存贮费( C P C_P CP:单位物品在单位时间内的存贮成本。
  3. 短缺损失费( C S C_S CS:缺货导致的单位损失成本。

1.3 常见存贮策略

  1. 循环策略:每隔固定时间 t t t补充固定量 Q Q Q
  2. ( t , S ) (t, S) (t,S)策略:每隔时间 t t t补足至最大存贮量 S S S
  3. ( s , S ) (s, S) (s,S)策略:当存贮量 I ≤ s I \leq s Is时,补充至 S S S

2. 无约束确定型存贮模型

2.1 模型一:不允许缺货,补充时间极短(EOQ模型)

假设条件
  • 不允许缺货( C S → ∞ C_S \to \infty CS),需求连续均匀(速率为 D D D)。
  • 瞬时补货,订货费 C D C_D CD与批量无关,单位存贮费为 C P C_P CP
存贮量变化

存贮量从 Q Q Q线性降至 0 0 0,平均存贮量为 1 2 Q \frac{1}{2}Q 21Q,周期 T = Q D T = \frac{Q}{D} T=DQ

费用函数与最优解

单位时间总平均费用为:
C = 1 2 C P Q + C D D Q C = \frac{1}{2}C_P Q + \frac{C_D D}{Q} C=21CPQ+QCDD
Q Q Q求导并令导数为零,得到经济订购批量(EOQ)公式
Q ∗ = 2 C D D C P , T ∗ = 2 C D C P D , C ∗ = 2 C D C P D Q^* = \sqrt{\frac{2 C_D D}{C_P}}, \quad T^* = \sqrt{\frac{2 C_D}{C_P D}}, \quad C^* = \sqrt{2 C_D C_P D} Q=CP2CDD ,T=CPD2CD ,C=2CDCPD

示例1:某商品日需求 D = 100 D=100 D=100件,订货费 C D = 10 C_D=10 CD=10元,存贮费 C P = 0.005 C_P=0.005 CP=0.005元/件·天。
计算得:
Q ∗ = 2 × 10 × 100 0.005 = 632   件 , T ∗ = 6.32   天 , C ∗ = 3.16   元/天 Q^* = \sqrt{\frac{2 \times 10 \times 100}{0.005}} = 632 \, \text{件}, \quad T^* = 6.32 \, \text{天}, \quad C^* = 3.16 \, \text{元/天} Q=0.0052×10×100 =632,T=6.32,C=3.16/


2.2 模型二:允许缺货,补充时间较长(经济生产批量模型)

假设条件
  • 允许缺货( C S C_S CS有限),补货速率 P > D P > D P>D,生产周期内分阶段补货与消耗。
存贮状态分析
  • 缺货阶段 [ 0 , t 1 ] [0, t_1] [0,t1],缺货量 B = D t 1 B = D t_1 B=Dt1
  • 补货阶段 [ t 1 , t 3 ] [t_1, t_3] [t1,t3],生产速率 P P P,补足缺货并积累存贮至 A = ( P − D ) ( t 3 − t 2 ) A = (P - D)(t_3 - t_2) A=(PD)(t3t2)
  • 纯消耗阶段 [ t 3 , T ] [t_3, T] [t3,T],存贮量从 A A A降至 0 0 0
费用函数与最优解

周期 T T T内总费用包括存贮费、缺货费和订货费。通过优化 T T T t 2 t_2 t2,得到:
T ∗ = 2 C D ( C P + C S ) D C P C S ( 1 − D P ) , Q ∗ = D T ∗ T^* = \frac{2 C_D (C_P + C_S)}{D C_P C_S \left(1 - \frac{D}{P}\right)}, \quad Q^* = D T^* T=DCPCS(1PD)2CD(CP+CS),Q=DT
缺货补足时间 t 2 ∗ = C P C P + C S T ∗ t_2^* = \frac{C_P}{C_P + C_S} T^* t2=CP+CSCPT,最小费用 C ∗ = 2 C D T ∗ C^* = \frac{2 C_D}{T^*} C=T2CD

示例2:某公司年需求 D = 4900 D=4900 D=4900件,生产速率 P = 9800 P=9800 P=9800件/年, C P = 1000 C_P=1000 CP=1000元/件·年, C S = 2000 C_S=2000 CS=2000元/件·年, C D = 500 C_D=500 CD=500元。
计算得:
T ∗ = 9   天 , Q ∗ = 121   件 , C ∗ = 40414.52   元/年 T^* = 9 \, \text{天}, \quad Q^* = 121 \, \text{件}, \quad C^* = 40414.52 \, \text{元/年} T=9,Q=121,C=40414.52/


2.3 模型三:不允许缺货,补充时间较长

假设条件
  • 不允许缺货( C S → ∞ C_S \to \infty CS),生产速率 P > D P > D P>D,补货需一定时间。
存贮量变化

最高存贮量 A = ( 1 − D P ) Q A = \left(1 - \frac{D}{P}\right)Q A=(1PD)Q,平均存贮量 1 2 A \frac{1}{2}A 21A

费用函数与最优解

C = 1 2 ( 1 − D P ) Q C P + C D D Q C = \frac{1}{2}\left(1 - \frac{D}{P}\right) Q C_P + \frac{C_D D}{Q} C=21(1PD)QCP+QCDD
最优生产批量:
Q ∗ = 2 C D D C P ( 1 − D P ) Q^* = \sqrt{\frac{2 C_D D}{C_P \left(1 - \frac{D}{P}\right)}} Q=CP(1PD)2CDD


2.4 模型四:允许缺货,补充时间极短

假设条件
  • 允许缺货( C S C_S CS有限),瞬时补货( P → ∞ P \to \infty P)。
费用函数与最优解

平均总费用为:
C = C P ( Q − S ) 2 2 Q + C D D Q + C S S 2 2 Q C = \frac{C_P (Q - S)^2}{2 Q} + \frac{C_D D}{Q} + \frac{C_S S^2}{2 Q} C=2QCP(QS)2+QCDD+2QCSS2
最优订货量和最大缺货量:
Q ∗ = 2 C D D ( C P + C S ) C P C S , S ∗ = C P C P + C S Q ∗ Q^* = \sqrt{\frac{2 C_D D (C_P + C_S)}{C_P C_S}}, \quad S^* = \frac{C_P}{C_P + C_S} Q^* Q=CPCS2CDD(CP+CS) ,S=CP+CSCPQ


2.5 模型五:经济订购批量折扣模型

核心思想

商品单价 K ( Q ) K(Q) K(Q)随订货量分段变化,总费用包括存贮费、订货费和采购费:
C = 1 2 Q C P ( Q ) + C D D Q + D K ( Q ) C = \frac{1}{2} Q C_P(Q) + \frac{C_D D}{Q} + D K(Q) C=21QCP(Q)+QCDD+DK(Q)
其中 C P ( Q ) = r K ( Q ) C_P(Q) = r K(Q) CP(Q)=rK(Q) r r r为存贮费率。

求解步骤
  1. 计算各价格区间的 Q j ∗ = 2 C D D r K j Q_j^* = \sqrt{\frac{2 C_D D}{r K_j}} Qj=rKj2CDD
  2. 验证 Q j ∗ Q_j^* Qj是否落在对应区间,选择使总费用最小的 Q ∗ Q^* Q

结语

确定性存贮模型通过数学推导与优化,为库存管理提供了定量决策工具。实际应用中需结合约束条件(如资金、库容)调整模型,并借助LINGO等工具求解复杂场景。理解模型假设与核心公式,能够有效降低存贮成本,提升供应链效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值