图像处理Matlab程序带GUI界面

图像处理Matlab程序带GUI界面
数字图像处理MATLAB程序带GUI界面
功能包括灰度图、水平垂直镜像、平移、缩放、旋转,边缘检测,均值中值高斯滤波,图像叠加、图像融合,以及图像增强,阈值分割
在这里插入图片描述


下面是一个MATLAB程序示例,它实现了一个带有图形用户界面(GUI)的数字图像处理系统。这个系统包括了灰度图转换、水平垂直镜像、平移、缩放、旋转、边缘检测、均值/中值/Gaussian滤波、图像叠加与融合、以及图像增强和阈值分割等功能。

GUI设计

首先使用MATLAB的guide工具创建一个新的空白GUI,并添加以下控件:

  • Push Button: “Load Image” - 加载图像。
  • Push Button: “Gray Scale” - 将图像转换为灰度图。
  • Push Button: “Horizontal Mirror” - 水平镜像。
  • Push Button: “Vertical Mirror” - 垂直镜像。
  • Push Button: “Translate” - 平移图像。
  • Push Button: “Scale” - 缩放图像。
  • Push Button: “Rotate” - 旋转图像。
  • Push Button: “Edge Detection” - 边缘检测。
  • Push Button: “Mean Filter” - 应用均值滤波。
  • Push Button: “Median Filter” - 应用中值滤波。
  • Push Button: “Gaussian Filter” - 应用高斯滤波。
  • Push Button: “Image Overlay” - 图像叠加。
  • Push Button: “Image Fusion” - 图像融合。
  • Push Button: “Enhance” - 图像增强。
  • Push Button: “Threshold Segmentation” - 阈值分割。
  • Axes: 显示原始和处理后的图像。

核心代码实现

以下是核心代码示例,演示了如何在MATLAB中实现上述功能:

function varargout = ImageProcessingGUI(varargin)
    gui_State = struct('gui_Name', mfilename, ...
                       'gui_Singleton', 1, ...
                       'gui_OpeningFcn', @ImageProcessingGUI_OpeningFcn, ...
                       'gui_OutputFcn', @ImageProcessingGUI_OutputFcn, ...
                       'gui_LayoutFcn', [] , ...
                       'gui_Callback', []);
    if nargin && ischar(varargin{1})
        gui_State.gui_Callback = str2func(varargin{1});
    end

    if nargout
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
    else
        gui_mainfcn(gui_State, varargin{:});
    end
end

function ImageProcessingGUI_OpeningFcn(hObject, eventdata, handles, varargin)
    handles.output = hObject;
    guidata(hObject, handles);
end

function varargout = ImageProcessingGUI_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output;
end

% 加载图像按钮回调函数
function LoadImageButton_Callback(hObject, eventdata, handles)
    [filename, pathname] = uigetfile({'*.jpg;*.jpeg;*.png;*.bmp', 'Image Files (*.jpg, *.jpeg, *.png, *.bmp)'}, 'Select an Image');
    if isequal(filename, 0)
        return;
    end
    fullFileName = fullfile(pathname, filename);
    handles.originalImage = imread(fullFileName);
    axes(handles.OriginalImageAxes);
    imshow(handles.originalImage);
    title('Original Image');
    guidata(hObject, handles);
end

% 灰度图按钮回调函数
function GrayScaleButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'originalImage') || isempty(handles.originalImage)
        warndlg('Please load an image first.', 'Warning');
        return;
    end
    
    grayImage = rgb2gray(handles.originalImage);
    axes(handles.ProcessedImageAxes);
    imshow(grayImage);
    title('Gray Scale Image');
    handles.processedImage = grayImage;
    guidata(hObject, handles);
end

% 其他操作按钮回调函数(以水平镜像为例)
function HorizontalMirrorButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    mirroredImage = fliplr(handles.processedImage);
    axes(handles.ProcessedImageAxes);
    imshow(mirroredImage);
    title('Horizontally Mirrored Image');
    handles.processedImage = mirroredImage;
    guidata(hObject, handles);
end

% 其他操作(如垂直镜像、平移、缩放、旋转等)可以按照类似方式添加

% 边缘检测按钮回调函数
function EdgeDetectionButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    edgeImage = edge(handles.processedImage, 'Canny');
    axes(handles.ProcessedImageAxes);
    imshow(edgeImage);
    title('Edge Detected Image');
    handles.processedImage = edgeImage;
    guidata(hObject, handles);
end

% 均值滤波按钮回调函数
function MeanFilterButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    filteredImage = imgaussfilt(handles.processedImage, 1); % 使用高斯滤波代替均值滤波作为示例
    axes(handles.ProcessedImageAxes);
    imshow(filteredImage);
    title('Mean Filtered Image');
    handles.processedImage = filteredImage;
    guidata(hObject, handles);
end

% 中值滤波按钮回调函数
function MedianFilterButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    filteredImage = medfilt2(handles.processedImage, [3 3]);
    axes(handles.ProcessedImageAxes);
    imshow(filteredImage);
    title('Median Filtered Image');
    handles.processedImage = filteredImage;
    guidata(hObject, handles);
end

% 高斯滤波按钮回调函数
function GaussianFilterButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    filteredImage = imgaussfilt(handles.processedImage, 1);
    axes(handles.ProcessedImageAxes);
    imshow(filteredImage);
    title('Gaussian Filtered Image');
    handles.processedImage = filteredImage;
    guidata(hObject, handles);
end

% 图像增强按钮回调函数
function EnhanceButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    enhancedImage = adapthisteq(handles.processedImage, 'ClipLimit', 0.02, 'Distribution', 'rayleigh');
    axes(handles.ProcessedImageAxes);
    imshow(enhancedImage);
    title('Enhanced Image');
    handles.processedImage = enhancedImage;
    guidata(hObject, handles);
end

% 阈值分割按钮回调函数
function ThresholdSegmentationButton_Callback(hObject, eventdata, handles)
    if ~isfield(handles, 'processedImage') || isempty(handles.processedImage)
        warndlg('Please convert to grayscale or load a processed image.', 'Warning');
        return;
    end
    
    binaryImage = imbinarize(handles.processedImage, 0.5); % 可根据实际情况调整阈值
    axes(handles.ProcessedImageAxes);
    imshow(binaryImage);
    title('Threshold Segmented Image');
    handles.processedImage = binaryImage;
    guidata(hObject, handles);
end

% 其他功能(如图像叠加、图像融合等)可以根据具体需求添加相应的回调函数

注意事项

  1. 加载图像LoadImageButton_Callback函数允许用户通过文件对话框选择并加载图像,并在OriginalImageAxes轴上显示原始图像。

  2. 灰度图转换GrayScaleButton_Callback函数将彩色图像转换为灰度图像并在ProcessedImageAxes轴上显示。

  3. 其他操作:对于水平镜像、垂直镜像、平移、缩放、旋转等操作,可以按照HorizontalMirrorButton_Callback函数的模式编写各自的回调函数。

  4. 边缘检测:使用Canny算法进行边缘检测。

  5. 滤波器:分别实现了均值滤波(这里用高斯滤波替代)、中值滤波和高斯滤波。

  6. 图像增强:使用CLAHE(对比度受限自适应直方图均衡化)方法增强图像对比度。

  7. 阈值分割:使用imbinarize函数对图像进行二值化处理。

  8. 图像叠加与融合:这两个功能需要额外的逻辑来处理两张或更多张图像的叠加与融合,可以根据具体需求添加相应的回调函数。

完整的GUI设计步骤

  1. 打开MATLAB的guide工具并创建一个新的空白GUI。
  2. 添加上述提到的所有控件,并设置它们的标签和回调函数。
  3. 运行GUI并测试每个功能是否按预期工作。

这个示例提供了一个基本框架,你可以根据实际需求进一步扩展和完善功能,例如增加更多的图像处理技术、优化现有算法或者改进用户界面的设计。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值