这是一款利用深度学习技术设计的鱼类识别工具,专为海洋鱼类的自动检测和分类开发。该系统采用VGG-19深度学习模型进行训练,能够识别带鱼、比目鱼、飞鱼等11种不同海洋鱼类。该系统集成了图像预处理、特征提取和分类算法,并支持多种鱼类特征的可视化展示,是科研人员、海洋生物学家和数据分析人员的理想工具。
主要功能:
鱼类种类识别:利用经过VGG-19模型训练的深度学习算法,该系统能够精确识别多种海洋鱼类种类。只需导入鱼类图像,系统即可自动识别鱼的种类,并显示识别结果。系统支持11种不同的海洋鱼类,包括带鱼、比目鱼、飞鱼等。
鱼类特征分析:除了种类识别外,系统还能够对鱼的颜色、形状、鳞片特征、游动方式、栖息地及鳃结构等进行详细分析。这为研究人员提供了更加深入的鱼类行为及生物特征的理解。
图像预处理功能:为了提高识别的准确性和处理效果,系统内置了丰富的图像预处理算法。
主要算法:
直方图均衡化:增强图像的对比度,突出鱼类特征,便于后续的分类和识别。
均值滤波:用于去除图像中的噪声,平滑图像边缘,提高图像质量。
Roberts边缘分割:精确分割鱼类边缘区域,使鱼类形态特征更加清晰。
二值化处理:将图像转换为黑白形式,简化图像内容以提高识别效率。
实时识别率显示:系统能够在每次识别时,实时显示识别率,帮助用户评估识别模型的准确性。识别率是基于深度学习模型的预测结果与实际鱼类的匹配度计算得出。
推荐系统要求: MATLAB R2024a或以上版本 - 支持Windows、macOS操作系统。
文章目录
基于Matlab的海洋鱼类物种提取、识别和检测系统的GUI设计及代码实现。此系统旨在通过图像处理技术对海洋鱼类进行分类和识别。
功能概述
- 图像加载:用户可以选择本地图片。
- 预处理:对图像进行灰度化、去噪等操作。
- 特征提取:提取形状、纹理等特征。
- 分类识别:使用机器学习模型(如SVM或KNN)进行鱼类种类分类。
- 结果显示:在GUI中显示识别结果和置信度。
GUI界面设计
使用Matlab的GUIDE
工具创建图形用户界面,包含以下组件:
- 按钮:
- 加载图片
- 开始识别
- 退出程序
- 图像显示区域:
- 原始图片
- 处理后的图片
- 文本框:
- 显示识别结果
—
代码实现
1. GUI界面初始化
function varargout = FishSpeciesRecognition(varargin)
% FISHSPECIESRECOGNITION MATLAB code for FishSpeciesRecognition.fig
% FISHSPECIESRECOGNITION, by itself, creates a new FISHSPECIESRECOGNITION or raises the existing
% singleton*.
%
% H = FISHSPECIESRECOGNITION returns the handle to a new FISHSPECIESRECOGNITION or the handle to
% the existing singleton*.
%
% FISHSPECIESRECOGNITION('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FISHSPECIESRECOGNITION.M with the given input arguments.
%
% FISHSPECIESRECOGNITION('Property','Value',...) creates a new FISHSPECIESRECOGNITION or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FishSpeciesRecognition_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FishSpeciesRecognition_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help FishSpeciesRecognition
% Last Modified by GUIDE v2.5 20-Mar-2025 14:25:36
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @FishSpeciesRecognition_OpeningFcn, ...
'gui_OutputFcn', @FishSpeciesRecognition_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
2. 回调函数
function FishSpeciesRecognition_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to FishSpeciesRecognition (see VARARGIN)
% Choose default command line output for FishSpeciesRecognition
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UI Initialization
set(handles.axes1, 'Visible', 'off'); % Original Image
set(handles.axes2, 'Visible', 'off'); % Processed Image
set(handles.textResult, 'String', '识别结果将显示在这里');
3. 图片加载功能
function loadImage_Callback(hObject, eventdata, handles)
% hObject handle to loadImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp', 'Image Files (*.jpg, *.png, *.bmp)'}, '选择图片');
if isequal(filename, 0)
return;
end
fullpath = fullfile(pathname, filename);
img = imread(fullpath);
% Display original image
axes(handles.axes1);
imshow(img);
title('原始图片');
set(handles.axes1, 'Visible', 'on');
% Store image in handles
handles.img = img;
guidata(hObject, handles);
4. 鱼类识别功能
function recognizeFish_Callback(hObject, eventdata, handles)
% hObject handle to recognizeFish (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if ~isfield(handles, 'img')
errordlg('请先加载图片!', '错误');
return;
end
img = handles.img;
% Preprocessing
grayImg = rgb2gray(img);
bwImg = imbinarize(grayImg);
cleanedImg = bwareaopen(bwImg, 100); % Remove small objects
% Feature extraction (example: Hu Moments)
stats = regionprops(cleanedImg, 'Area', 'BoundingBox', 'Centroid', 'HuMoments');
features = [stats.HuMoments]; % Extract features
% Load trained model (assume it's an SVM model)
load('fish_model.mat', 'model'); % Replace with your actual model file
predictedLabel = predict(model, features);
% Display processed image
axes(handles.axes2);
imshow(cleanedImg);
title('处理后的图片');
set(handles.axes2, 'Visible', 'on');
% Show result
set(handles.textResult, 'String', sprintf('识别结果: %s', predictedLabel));
5. 退出功能
function exitButton_Callback(hObject, eventdata, handles)
% hObject handle to exitButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcf);
训练模型
- 准备数据集(包含不同种类的鱼类图片)。
- 提取特征(如Hu矩、颜色直方图等)。
- 使用Matlab的
fitcsvm
函数训练支持向量机(SVM)模型,并保存为.mat
文件。
% Example: Training an SVM model
features = ...; % Feature matrix
labels = ...; % Labels (species names)
model = fitcsvm(features, labels);
save('fish_model.mat', 'model');
总结
上述代码实现了基于Matlab的海洋鱼类识别系统,包括GUI设计、图像处理、特征提取和分类识别。用户可以加载图片并获得鱼类种类的预测结果。