矿石头分类种类识别–基于Matlab提取分割检测系统GUI界面
产品简介:这是一款专业的石头识别工具,专为地质学研究、矿物分类和材料分析设计。系统采用深度学习VGG19模型进行训练,能够识别七种不同类型的石头,包括石灰岩、大理石和煤炭等。系统不仅能识别石头的种类,还可分析石头的颜色、纹理、光泽度、成分以及孔隙率等关键特征。此外,该系统集成了多种图像处理算法,为用户提供了全面的图像预处理和特征提取功能,确保识别的准确性和可靠性。
主要功能:
石头种类识别:通过VGG19深度学习模型,系统能够识别七种常见的石头类型,如石灰岩、大理石、煤炭等。用户上传石头图像后,系统会自动分类,并显示石头的具体种类。
石头特征分析:系统可对石头的多种特征进行识别和分析,帮助用户深入了解石头的物理和化学性质。具体包括:
颜色识别:精确分析石头的颜色特征,有助于进行矿物学研究和材料分类。
纹理检测:通过图像分析石头的纹理结构,揭示石头的内在成分和形成过程。
光泽度分析:识别石头表面的光泽程度,便于分类石头的材质与应用。
成分与孔隙率识别:分析石头的微观成分与孔隙率,提供石头结构和质量的综合评价。
图像预处理功能:为了提高识别效果,系统提供多种图像处理功能,用户可以对上传的石头图像进行处理,包括:
直方图均衡化:增强图像对比度,使石头的细节更加清晰,提升识别效果。
形态学腐蚀:对图像进行噪声去除和轮廓增强,确保石头边缘特征的准确识别。
Sobel边缘检测:精确提取石头图像中的边缘和形状,有助于石头纹理和形态的分析。
二值化处理:将图像转换为黑白二值形式,简化图像内容,便于识别和分类。
识别率显示:在识别过程中,系统会显示每次识别的准确率,帮助用户评估模型的表现,确保识别结果的可靠性。
算法说明:
系统采用VGG19深度学习模型作为核心算法,通过卷积神经网络提取石头图像中的高级特征,进行分类和识别。预处理步骤中的直方图均衡化、形态学腐蚀和Sobel边缘检测提高了图像质量,特别是在石头的纹理、边缘和形状分析方面。二值化处理进一步简化了图像结构,使模型更加聚焦于石头的核心特征,最终提高识别的准确性和效率。
推荐系统要求: MATLAB R2024a或以上版本 - 支持Windows、macOS操作系统。
文章目录
以下是基于Matlab的矿石分类种类识别系统的GUI设计及代码实现。此系统旨在通过图像处理技术对矿石进行分割、特征提取和分类。
功能概述
- 图像加载:用户可以选择本地图片。
- 预处理:对图像进行灰度化、去噪、边缘检测等操作。
- 分割与提取:使用阈值分割或边缘检测方法分割矿石区域。
- 特征提取:提取颜色、纹理、形状等特征。
- 分类识别:使用机器学习模型(如SVM或KNN)进行矿石种类分类。
- 结果显示:在GUI中显示分割结果和识别结果。
GUI界面设计
使用Matlab的GUIDE
工具创建图形用户界面,包含以下组件:
- 按钮:
- 加载图片
- 开始识别
- 退出程序
- 图像显示区域:
- 原始图片
- 分割后的图片
- 文本框:
- 显示矿石种类
—
代码实现
1. GUI界面初始化
function varargout = MineralClassification(varargin)
% MINERALCLASSIFICATION MATLAB code for MineralClassification.fig
% MINERALCLASSIFICATION, by itself, creates a new MINERALCLASSIFICATION or raises the existing
% singleton*.
%
% H = MINERALCLASSIFICATION returns the handle to a new MINERALCLASSIFICATION or the handle to
% the existing singleton*.
%
% MINERALCLASSIFICATION('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MINERALCLASSIFICATION.M with the given input arguments.
%
% MINERALCLASSIFICATION('Property','Value',...) creates a new MINERALCLASSIFICATION or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before MineralClassification_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MineralClassification_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help MineralClassification
% Last Modified by GUIDE v2.5 20-Mar-2025 14:25:36
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @MineralClassification_OpeningFcn, ...
'gui_OutputFcn', @MineralClassification_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
2. 回调函数
function MineralClassification_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MineralClassification (see VARARGIN)
% Choose default command line output for MineralClassification
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UI Initialization
set(handles.axes1, 'Visible', 'off'); % Original Image
set(handles.axes2, 'Visible', 'off'); % Segmented Image
set(handles.textResult, 'String', '识别结果将显示在这里');
3. 图片加载功能
function loadImage_Callback(hObject, eventdata, handles)
% hObject handle to loadImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp', 'Image Files (*.jpg, *.png, *.bmp)'}, '选择图片');
if isequal(filename, 0)
return;
end
fullpath = fullfile(pathname, filename);
img = imread(fullpath);
% Display original image
axes(handles.axes1);
imshow(img);
title('原始图片');
set(handles.axes1, 'Visible', 'on');
% Store image in handles
handles.img = img;
guidata(hObject, handles);
4. 矿石分类识别功能
function classifyMineral_Callback(hObject, eventdata, handles)
% hObject handle to classifyMineral (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if ~isfield(handles, 'img')
errordlg('请先加载图片!', '错误');
return;
end
img = handles.img;
% Preprocessing
grayImg = rgb2gray(img);
bwImg = imbinarize(grayImg); % Threshold segmentation
cleanedImg = bwareaopen(bwImg, 100); % Remove small objects
% Feature extraction (example: Color Histogram + Hu Moments)
colorHist = imhist(grayImg);
stats = regionprops(cleanedImg, 'Area', 'BoundingBox', 'Centroid', 'HuMoments');
features = [colorHist; stats.HuMoments]; % Combine features
% Load trained model (assume it's an SVM model)
load('mineral_model.mat', 'model'); % Replace with your actual model file
predictedLabel = predict(model, features);
% Display segmented image
axes(handles.axes2);
imshow(cleanedImg);
title('分割后的图片');
set(handles.axes2, 'Visible', 'on');
% Show result
set(handles.textResult, 'String', sprintf('识别结果: %s', predictedLabel));
5. 退出功能
function exitButton_Callback(hObject, eventdata, handles)
% hObject handle to exitButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcf);
训练模型
- 准备数据集(包含不同矿石种类的图片)。
- 提取特征(如颜色直方图、Hu矩、局部二值模式等)。
- 使用Matlab的
fitcsvm
函数训练支持向量机(SVM)模型,并保存为.mat
文件。
% Example: Training an SVM model
features = ...; % Feature matrix
labels = ...; % Labels (mineral types)
model = fitcsvm(features, labels);
save('mineral_model.mat', 'model');
总结
上述代码实现了基于Matlab的矿石分类种类识别系统,包括GUI设计、图像分割、特征提取和分类识别。用户可以加载图片并获得矿石种类的预测结果。