矿石头分类种类识别--基于Matlab提取分割检测系统GUI界面

矿石头分类种类识别–基于Matlab提取分割检测系统GUI界面

产品简介:这是一款专业的石头识别工具,专为地质学研究、矿物分类和材料分析设计。系统采用深度学习VGG19模型进行训练,能够识别七种不同类型的石头,包括石灰岩、大理石和煤炭等。系统不仅能识别石头的种类,还可分析石头的颜色、纹理、光泽度、成分以及孔隙率等关键特征。此外,该系统集成了多种图像处理算法,为用户提供了全面的图像预处理和特征提取功能,确保识别的准确性和可靠性。
主要功能:
石头种类识别:通过VGG19深度学习模型,系统能够识别七种常见的石头类型,如石灰岩、大理石、煤炭等。用户上传石头图像后,系统会自动分类,并显示石头的具体种类。
石头特征分析:系统可对石头的多种特征进行识别和分析,帮助用户深入了解石头的物理和化学性质。具体包括:
颜色识别:精确分析石头的颜色特征,有助于进行矿物学研究和材料分类。
纹理检测:通过图像分析石头的纹理结构,揭示石头的内在成分和形成过程。
光泽度分析:识别石头表面的光泽程度,便于分类石头的材质与应用。
成分与孔隙率识别:分析石头的微观成分与孔隙率,提供石头结构和质量的综合评价。
图像预处理功能:为了提高识别效果,系统提供多种图像处理功能,用户可以对上传的石头图像进行处理,包括:
直方图均衡化:增强图像对比度,使石头的细节更加清晰,提升识别效果。
形态学腐蚀:对图像进行噪声去除和轮廓增强,确保石头边缘特征的准确识别。
Sobel边缘检测:精确提取石头图像中的边缘和形状,有助于石头纹理和形态的分析。
二值化处理:将图像转换为黑白二值形式,简化图像内容,便于识别和分类。
识别率显示:在识别过程中,系统会显示每次识别的准确率,帮助用户评估模型的表现,确保识别结果的可靠性。
算法说明:
系统采用VGG19深度学习模型作为核心算法,通过卷积神经网络提取石头图像中的高级特征,进行分类和识别。预处理步骤中的直方图均衡化、形态学腐蚀和Sobel边缘检测提高了图像质量,特别是在石头的纹理、边缘和形状分析方面。二值化处理进一步简化了图像结构,使模型更加聚焦于石头的核心特征,最终提高识别的准确性和效率。

推荐系统要求: MATLAB R2024a或以上版本 - 支持Windows、macOS操作系统。

在这里插入图片描述
在这里插入图片描述

以下是基于Matlab的矿石分类种类识别系统的GUI设计及代码实现。此系统旨在通过图像处理技术对矿石进行分割、特征提取和分类。


功能概述

  1. 图像加载:用户可以选择本地图片。
  2. 预处理:对图像进行灰度化、去噪、边缘检测等操作。
  3. 分割与提取:使用阈值分割或边缘检测方法分割矿石区域。
  4. 特征提取:提取颜色、纹理、形状等特征。
  5. 分类识别:使用机器学习模型(如SVM或KNN)进行矿石种类分类。
  6. 结果显示:在GUI中显示分割结果和识别结果。

GUI界面设计

使用Matlab的GUIDE工具创建图形用户界面,包含以下组件:

  1. 按钮
    • 加载图片
    • 开始识别
    • 退出程序
  2. 图像显示区域
    • 原始图片
    • 分割后的图片
  3. 文本框
    • 显示矿石种类

在这里插入图片描述

代码实现

1. GUI界面初始化
function varargout = MineralClassification(varargin)
% MINERALCLASSIFICATION MATLAB code for MineralClassification.fig
%      MINERALCLASSIFICATION, by itself, creates a new MINERALCLASSIFICATION or raises the existing
%      singleton*.
%
%      H = MINERALCLASSIFICATION returns the handle to a new MINERALCLASSIFICATION or the handle to
%      the existing singleton*.
%
%      MINERALCLASSIFICATION('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in MINERALCLASSIFICATION.M with the given input arguments.
%
%      MINERALCLASSIFICATION('Property','Value',...) creates a new MINERALCLASSIFICATION or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before MineralClassification_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to MineralClassification_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MineralClassification

% Last Modified by GUIDE v2.5 20-Mar-2025 14:25:36

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @MineralClassification_OpeningFcn, ...
                   'gui_OutputFcn',  @MineralClassification_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

2. 回调函数
function MineralClassification_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to MineralClassification (see VARARGIN)

% Choose default command line output for MineralClassification
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UI Initialization
set(handles.axes1, 'Visible', 'off'); % Original Image
set(handles.axes2, 'Visible', 'off'); % Segmented Image
set(handles.textResult, 'String', '识别结果将显示在这里');

3. 图片加载功能
function loadImage_Callback(hObject, eventdata, handles)
% hObject    handle to loadImage (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp', 'Image Files (*.jpg, *.png, *.bmp)'}, '选择图片');
if isequal(filename, 0)
    return;
end

fullpath = fullfile(pathname, filename);
img = imread(fullpath);

% Display original image
axes(handles.axes1);
imshow(img);
title('原始图片');
set(handles.axes1, 'Visible', 'on');

% Store image in handles
handles.img = img;
guidata(hObject, handles);

4. 矿石分类识别功能
function classifyMineral_Callback(hObject, eventdata, handles)
% hObject    handle to classifyMineral (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

if ~isfield(handles, 'img')
    errordlg('请先加载图片!', '错误');
    return;
end

img = handles.img;

% Preprocessing
grayImg = rgb2gray(img);
bwImg = imbinarize(grayImg); % Threshold segmentation
cleanedImg = bwareaopen(bwImg, 100); % Remove small objects

% Feature extraction (example: Color Histogram + Hu Moments)
colorHist = imhist(grayImg);
stats = regionprops(cleanedImg, 'Area', 'BoundingBox', 'Centroid', 'HuMoments');
features = [colorHist; stats.HuMoments]; % Combine features

% Load trained model (assume it's an SVM model)
load('mineral_model.mat', 'model'); % Replace with your actual model file
predictedLabel = predict(model, features);

% Display segmented image
axes(handles.axes2);
imshow(cleanedImg);
title('分割后的图片');
set(handles.axes2, 'Visible', 'on');

% Show result
set(handles.textResult, 'String', sprintf('识别结果: %s', predictedLabel));

5. 退出功能
function exitButton_Callback(hObject, eventdata, handles)
% hObject    handle to exitButton (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

close(gcf);

训练模型

  1. 准备数据集(包含不同矿石种类的图片)。
  2. 提取特征(如颜色直方图、Hu矩、局部二值模式等)。
  3. 使用Matlab的fitcsvm函数训练支持向量机(SVM)模型,并保存为.mat文件。
% Example: Training an SVM model
features = ...; % Feature matrix
labels = ...;   % Labels (mineral types)
model = fitcsvm(features, labels);
save('mineral_model.mat', 'model');

总结

上述代码实现了基于Matlab的矿石分类种类识别系统,包括GUI设计、图像分割、特征提取和分类识别。用户可以加载图片并获得矿石种类的预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值