基于智能优化算法的库存及仓储优化研究
1.对于库存可以根据需求量采用ARIMA模型进行预测,以至于可知未来的需求量,做好库存管理。
2.仓储拣货路径优化。
下面用遗传算法进行实现。
模型建立和说明:
先设计一个场景,下面是一个场景
仓库布局:10×10网格,每个格子代表一个货位
待拣商品:8个商品随机分布在货位上
起点/终点:固定为(0,0)位置
主要的目标:最小化总移动距离=从起点出发依次访问所有商品货位后返回起点的路径长度
基于智能优化算法的库存及仓储优化研究
1.对于库存可以根据需求量采用ARIMA模型进行预测,以至于可知未来的需求量,做好库存管理。
2.仓储拣货路径优化。
下面用遗传算法进行实现。
模型建立和说明:
先设计一个场景,下面是一个场景
仓库布局:10×10网格,每个格子代表一个货位
待拣商品:8个商品随机分布在货位上
起点/终点:固定为(0,0)位置
主要的目标:最小化总移动距离=从起点出发依次访问所有商品货位后返回起点的路径长度