基于深度学习YOLOv8+Pyqt5的人脸检测识别系统设计含报告

基于深度学习YOLOv8+Pyqt5的人脸检测识别系统设计

在这里插入图片描述

基于深度学习YOLOv8+PyQt5的人脸检测识别系统设计

设计一个基于YOLOv8和PyQt5的人脸检测识别系统。这个系统将包括以下主要部分:

  1. YOLOv8人脸检测模型
  2. PyQt5图形用户界面
  3. 实时视频处理
  4. 结果可视化

系统架构

首先,我们需要安装必要的库:

pip install ultralytics opencv-python pyqt5 numpy

在这里插入图片描述

YOLOv8人脸检测模型

我们将使用Ultralytics提供的YOLOv8预训练模型,并针对人脸检测进行微调。

# face_detector.py
from ultralytics import YOLO
import cv2

class FaceDetector:
    def __init__(self, model_path='yolov8n-face.pt'):
        """初始化人脸检测器"""
        self.model = YOLO(model_path)
        
    def detect(self, frame):
        """执行人脸检测"""
        results = self.model(frame)
        return results[0].boxes.xyxy.cpu().numpy().astype(int)

PyQt5图形用户界面

接下来是PyQt5实现的主界面:

# main_window.py
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget, QFileDialog
from PyQt5.QtGui import QPixmap, QImage, QFont
from PyQt5.QtCore import Qt, QTimer
from face_detector import FaceDetector

class FaceDetectionApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("YOLOv8人脸检测系统")
        self.setGeometry(100, 100, 800, 600)
        
        # 初始化人脸检测器
        self.detector = FaceDetector()
        
        # 创建UI
        self.init_ui()
        
        # 定时器用于视频流更新
        self.timer = QTimer()
        self.timer.timeout.connect(self.update_frame)
        
        self.cap = None
        
    def init_ui(self):
        # 创建中央部件和布局
        central_widget = QWidget()
        self.setCentralWidget(central_widget)
        layout = QVBoxLayout()
        
        # 标题标签
        title_label = QLabel("YOLOv8人脸检测系统")
        title_label.setAlignment(Qt.AlignCenter)
        title_label.setFont(QFont("Arial", 18, QFont.Bold))
        layout.addWidget(title_label)
        
        # 视频显示标签
        self.video_label = QLabel()
        self.video_label.setAlignment(Qt.AlignCenter)
        self.video_label.setStyleSheet("border: 1px solid black")
        layout.addWidget(self.video_label)
        
        # 按钮布局
        self.btn_open = QPushButton("打开摄像头")
        self.btn_open.clicked.connect(self.toggle_camera)
        layout.addWidget(self.btn_open)
        
        # 设置中央布局
        central_widget.setLayout(layout)
        
    def toggle_camera(self):
        """切换摄像头状态"""
        if self.cap is None or not self.cap.isOpened():
            self.cap = cv2.VideoCapture(0)
            self.timer.start(20)  # 每20毫秒更新一次
            self.btn_open.setText("关闭摄像头")
        else:
            self.timer.stop()
            self.cap.release()
            self.btn_open.setText("打开摄像头")
            self.video_label.clear()
            
    def update_frame(self):
        """更新视频帧"""
        ret, frame = self.cap.read()
        if ret:
            # 执行人脸检测
            boxes = self.detector.detect(frame)
            
            # 绘制检测框
            for box in boxes:
                x1, y1, x2, y2 = box
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            
            # 转换为QImage并显示
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            h, w, ch = frame.shape
            bytes_per_line = ch * w
            qt_image = QImage(frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
            pixmap = QPixmap.fromImage(qt_image).scaled(
                self.video_label.width(), self.video_label.height(), 
                Qt.KeepAspectRatio, Qt.SmoothTransformation)
            self.video_label.setPixmap(pixmap)
            
    def closeEvent(self, event):
        """窗口关闭事件"""
        if self.cap and self.cap.isOpened():
            self.timer.stop()
            self.cap.release()
        event.accept()

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = FaceDetectionApp()
    window.show()
    sys.exit(app.exec_())

在这里插入图片描述

系统功能说明

这个系统实现了以下核心功能:

  1. 人脸检测:使用YOLOv8模型对输入图像进行实时人脸检测
  2. 实时视频处理:通过OpenCV获取摄像头视频流并进行实时处理
  3. 结果可视化:在PyQt5界面中显示原始视频和检测结果
  4. 摄像头控制:可以开启/关闭摄像头

使用说明

  1. 首先下载YOLOv8人脸检测模型(yolov8n-face.pt)
  2. 运行main_window.py启动应用程序
  3. 点击"打开摄像头"按钮开始检测
  4. 再次点击按钮可关闭摄像头

模型优化建议

  • 可以添加置信度阈值调节滑块
  • 支持加载不同的YOLOv8模型版本(s/m/l/x)
  • 添加性能统计信息(FPS等)
  • 支持保存检测结果到文件
  • 添加人脸识别功能

扩展功能建议

  1. 批量处理:支持处理图像文件夹
  2. 导出结果:将检测结果保存为CSV或JSON文件
  3. 多线程处理:提高视频处理性能
  4. 自定义训练:支持自定义数据集训练
  5. 界面美化:增加主题切换、样式调整等功能

这是一个基础但完整的YOLOv8+PyQt5人脸检测识别系统实现。

包含完整源码+标注好的数据集+配套论文+配置说明+源码文件说明等
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值