在现代医学领域,与基因紊乱相关疾病的早期检测至关重要。像肺癌,早期诊断的患者5年生存率可达57%,而四期癌症患者生存率仅3%。阿尔茨海默病的早期检测,能让患者改变生活方式、参与临床试验并提前治疗脑部退化症状,有效延长生命。尽管基因检测对评估晚发性阿尔茨海默病的可能性有帮助,对早发性阿尔茨海默病也有指示作用,但其检测技术仍有待完善。
目前,仅基于生物学研究的疾病检测技术多样,虽对特定病例精确,但通常需对疑似患者进行额外复杂医疗检测,成本高昂,不适合健康人群定期检测。例如,人们偶尔会接受常规血液检测,但很少有人愿意为预防癌症进行全身核磁共振检查,更不用说像活检这样的侵入性检测。因此,开发易于操作且能准确检测疾病的方法迫在眉睫。当下,通过遗传学进行检测是最具前景的方向,而机器学习为此提供了诸多工具。
遗传学基础
1866年,“遗传学之父”格雷戈尔·孟德尔提出性状代代相传,人类由此开启遗传学探索之旅。历经155年,我们对基因组的认识不断深入,如今已能解读和修改它。遗传信息掌控着生物体所有进程,存储于DNA中。DNA由两条含4种核苷酸(T、A、C、G)的链构成,长度约30亿。几乎所有细胞都含DNA,DNA转录成RNA(含A、U、C、G 4种核苷酸),RNA的核苷酸三联体“密码子”编码2