t0_54program
这个作者很懒,什么都没留下…
展开
-
使用Cython加速Python实现的遗传算法
本项目在GitHub上提供了Python实现的遗传算法。ga.py:实现了遗传算法的关键操作,如适应度函数计算(函数)、选择交配池(函数)、交叉(函数,实现单点交叉)以及变异(mutation()函数,仅更新单个基因的值)。:通过优化这个方程,展示了遗传算法的基本应用。它准备初始种群,并在各代中调用ga.py中的函数。通过本教程,我们成功使用Cython将遗传算法Python实现的计算时间从1.46秒大幅缩短至0.08秒,实现了18倍的速度提升。原创 2025-06-04 02:15:48 · 6 阅读 · 0 评论 -
使用Cython加速NumPy数组处理
定义NumPy数组的数据类型:使用指定NumPy数组的数据类型,该类型可通过cimport导入的定义文件获取。指定数组元素的数据类型和维度:仅为变量分配类型还不够,还需提供数组元素的数据类型和维度信息,这些细节在将NumPy数组定义为函数参数或函数内局部变量时设置,同时也可指定函数的返回数据类型。使用索引遍历NumPy数组:避免Python式的逐个赋值遍历方式,改用索引遍历数组,可大幅减少处理时间。禁用不必要的特性。原创 2025-06-04 02:13:59 · 89 阅读 · 0 评论 -
使用Cohere平台构建语义搜索引擎
借助Cohere平台,只需几行代码,就能把自然语言处理和生成功能集成到产品中。Cohere的大规模语言模型可以处理多种自然语言应用场景,比如分类、语义搜索、释义、总结以及内容创作等。用户还能针对自身用例构建特定的大型模型,并通过微调使用自己的数据进行训练。本文对用于语义搜索的句子嵌入做了简要概述。在进一步开发搜索产品时,还会涉及更多因素,比如处理长文本,或针对特定用例微调以更好地改进嵌入。希望通过这些内容,能帮助你快速为机器学习工作流程增添速度与简便性。原创 2025-06-04 02:12:11 · 8 阅读 · 0 评论 -
使用CNN和PyTorch进行目标定位分类模型训练全流程解析
数据加载器在模型训练中起着至关重要的作用,它负责管理数据的供应系统。我们通过定义Dataset类和ValDataset类来构建自定义的数据加载器。在Dataset类中,我们将图像、标签和边界框坐标加载到类变量中,并使用方法设计每次迭代的加载器输出。ValDataset类由于数据结构和性质相同,我们选择从Dataset类继承。# 每次迭代时以批次形式返回x,y值# 继承自Dataset类完成数据准备工作后,我们就可以进入模型构建部分。原创 2025-06-04 02:10:22 · 7 阅读 · 0 评论 -
使用Captum库对CIFAR数据集进行模型可解释性分析
为了训练模型,我们需要指定损失函数和优化技术。损失函数用于衡量模型的性能,在训练过程中,我们通过调整模型参数来最小化损失。本教程使用。原创 2025-06-04 02:08:33 · 3 阅读 · 0 评论 -
使用 nn.parallel.DistributedDataParallel 加速模型训练
实验结果表明,在理想的并行世界中,N个工作进程应带来N倍的加速。但实际情况是,使用模式下4个GPU才能获得约2倍的加速。混合精度训练通常能提供显著的加速,但对于A100 GPU和其他基于Ampere的GPU架构,提升有限。配置时间(秒)单GPU(基线)13.219.19.86.1DistributedDataParallel 4 GPUs + 混合精度6.5需要注意的是,使用的有效批量大小为4*256 = 1024,这使得模型更新次数减少,因此验证准确率(14%)远低于基线(27%)。原创 2025-06-04 02:06:44 · 4 阅读 · 0 评论 -
企业机器学习平台:构建还是购买?
部署这些系统不仅仅是发布一个模型,还意味着构建一个基础设施,以便能够基于新数据持续优化和重新训练,对意外行为进行警报并具备可调试性,并且拥有在不中断的情况下推出更新(以及回滚更改)的机制。这些行业思想领袖是将新技术推向市场的先驱,他们的利益与企业的利益在早期阶段是一致的,特别是在寻找产品与市场的契合点、跟踪趋势和最佳实践以及尽可能多地收集客户反馈方面。机器学习本质上是跨学科的,涵盖数据工程、数据科学和DevOps。如今,投资机器学习的企业大部分时间都花在工具和基础设施上,而花在构建和部署模型上的时间很少。原创 2025-06-04 02:03:03 · 5 阅读 · 0 评论 -
企业数据存储解决方案全解析
企业数据存储是指那些大规模的存储方案,旨在处理组织所产生的海量数据。与消费级存储不同,企业级系统构建的目的是支持广泛的数据访问、高可用性、可靠性以及安全性。企业通常利用这些系统来存储运营数据、交易记录以及客户信息等。原创 2025-06-04 02:01:14 · 4 阅读 · 0 评论 -
企业如何安全微调与使用大语言模型
优点:完全数据隐私,不依赖外部连接或服务可用性,若负载充足长期成本高效。缺点:前期基础设施和专业知识投入大,处理复杂任务准确率低于通过API的先进模型。成本估计:因问题复杂程度而异,妥善设置通常每个问题需投入数万到数十万美元。此外,每月需花费数百美元运行单GPU本地机器,具体成本依规模而定。原创 2025-06-04 01:59:26 · 4 阅读 · 0 评论 -
从非局部网络到全局上下文网络:深度理解计算机视觉中的注意力机制
在当今的计算机视觉领域,深度神经网络架构不断推陈出新,其中注意力机制扮演着关键角色。非局部网络(Non-Local Networks)为众多现代注意力机制提供了强大的直觉和基础。在这篇博客中,我们将深入探讨一种受非局部网络和挤压激励网络(Squeeze-and-Excitation Networks)启发而诞生的显著成果——全局上下文网络(Global Context Network,GCNet),它于2019年被ICCV研讨会收录。原创 2025-06-04 01:57:38 · 4 阅读 · 0 评论 -
从零开始用Python实现梯度下降算法:单输入单输出神经网络
至此,我们成功实现了适用于单输入或双输入的梯度下降算法。在下一个教程中,我们将扩展之前的实现,让算法能够处理更多输入。通过下一个教程中讨论的示例,我们将推导出一个通用规则,使梯度下降算法能够适用于任意数量的输入。原创 2025-06-04 01:53:58 · 4 阅读 · 0 评论 -
从起源到应用:深入探究Erlang与Elixir的技术之旅
在科技的长河中,有些古老技术在诞生数十年后依然能保持极高的相关性,Erlang及其虚拟机(VM)便是典型代表。从电信领域起源,历经二十多年的发展,凭借其宽松的设计与明智的决策,它们已在编程世界留下了浓墨重彩的一笔。原创 2025-06-04 01:52:08 · 4 阅读 · 0 评论 -
从编程之路到技术领导力:探索功能编程与Web3的旅程
另一方面,从纯技术领导角度来看,在小初创公司工作以及独立咨询的经历,使她掌握了多种语言和技能,这种能力在一定程度上产生了“威慑力”,让他人认为她在技术方面非常专业,从而使她更快地进入领导岗位或负责团队管理。她还在温哥华组织了功能编程聚会,为了让没有FP基础的人理解,她会用他们熟悉的语言来讲解概念,比如用Python来写单子(monad),这也促使她不断学习新语言。总之,布鲁克林的经历为我们展示了编程领域的多样性和不断发展的魅力,从功能编程到Web3,每一个领域都充满了机遇与挑战,等待着更多人去探索。原创 2025-06-04 01:50:19 · 4 阅读 · 0 评论 -
从研究到生产:深度学习的落地实践
在当今科技迅猛发展的时代,深度学习已从学术研究的象牙塔逐步迈向实际生产应用,为各个领域带来了前所未有的变革。这一系列文章旨在带领大家深入了解如何将深度学习模型从研究阶段的原型代码,成功部署并扩展,以服务海量用户。原创 2025-06-03 01:27:39 · 8 阅读 · 0 评论 -
从深度学习模型到实际应用:搭建完整图像分割服务
本文构建了模型推理器,通过Flask将其暴露到Web服务器,并构建了客户端发送请求预测自定义图像的掩码。然而,当前的Web服务器仅在本地运行,使用的Flask未针对生产环境优化,且无法同时处理多个用户。后续文章将介绍如何利用uWSGI创建高性能的生产就绪服务器,以及如何使用Nginx等负载均衡器将流量平均分配到多个进程,以同时服务大量用户。原创 2025-06-03 01:25:50 · 7 阅读 · 0 评论 -
从梯度笔记本中从零创建Dreambooth概念的全流程解析
在当今AI图像生成技术蓬勃发展的时代,Dreambooth作为Latent Diffusion模型技术的创新延伸,与广受欢迎的预训练模型Stable Diffusion紧密相关,为用户提供了个性化定制文本到图像模型的强大能力。本文将详细介绍如何在梯度笔记本(Gradient Notebook)中,从无到有创建一个Dreambooth概念,利用输入提示生成新颖图像,并将概念导出为模型检查点。原创 2025-06-03 01:24:01 · 5 阅读 · 0 评论 -
从教育视角看机器学习与AI的教学之道
在AI技术蓬勃发展的当下,如何有效地传授机器学习和AI知识成为众多教育者关注的焦点。我们与教育者Alex Castrounis的对话,为我们揭开了这一领域教学的神秘面纱。原创 2025-06-03 01:22:12 · 7 阅读 · 0 评论 -
从强化学习到超级马里奥:探索深度Q学习的奇妙之旅
在AI的广阔天地里,神经网络固然炫酷,但当我初次感受到自己在构建真正的AI时,并非是在处理图像分类或回归问题,而是投身于深度强化学习的领域。今天,就和大家分享这段精彩经历,学完本文,你将拥有一个能通关《超级马里奥兄弟(NES)》第一关的PyTorch强化学习智能体。原创 2025-06-03 01:20:24 · 2 阅读 · 0 评论 -
从实验到生产:使用Gradient构建推荐系统
本系列共分为六个部分。第一部分是提出业务问题,这是任何企业数据科学分析的关键起始点。后续部分依次为数据准备、构建TensorFlow模型、调整模型以实现最佳性能、将模型部署到生产环境以及总结、结论与下一步计划。伴随本系列博客的材料主要存放在GitHub仓库(https://github.com/gradient-ai/Deep-Learning-Recommender-TF )。原创 2025-06-03 01:16:47 · 2 阅读 · 0 评论 -
从头构建神经网络:基础概念与实践
神经网络作为人工智能的核心部分,几乎深度学习的每个概念都与之相关。虽然神经网络的基本功能犹如一个黑箱,其许多工作原理尚不明确,但通过理论、假设和大量研究,我们能更好地理解它们。在本系列博客的第一部分,已探讨了一些从零构建神经网络的基本概念,本文将继续深入,涵盖层的实现、激活函数以及损失函数等重要主题,并借助Paperspace Gradient平台执行相关代码片段。原创 2025-06-03 01:14:58 · 2 阅读 · 0 评论 -
从头搭建神经网络库:从全连接神经网络到GPU训练
在深入激动人心的部分之前,我们还得定义OpenCL内核。内核就是GPU实际执行的代码,一共需要三个内核:一个用于前向传播,一个用于输出层的反向传播,一个用于隐藏层的反向传播。GPU有很多核心,非常适合并行计算。我们可以认为每个核心运行一层中单个节点的代码,一层计算完成后,再进行下一层的计算。原创 2025-06-03 01:13:09 · 3 阅读 · 0 评论 -
从头在PyTorch中实现自己的YOLO v3目标检测器教程(第二部分)
本系列教程聚焦于如何在PyTorch中从零开始实现YOLO v3目标检测器,这是其中的第二部分。在上一部分,讲解了YOLO的工作原理,而在这一部分,我们将在PyTorch中实现YOLO所使用的各个层,也就是构建模型的基础模块。本教程代码基于Python 3.5和PyTorch 0.4编写,完整代码可在Github仓库获取。原创 2025-06-03 01:11:19 · 5 阅读 · 0 评论 -
从头在PyTorch中实现YOLO v3目标检测器教程(第三部分)
在PyTorch中,我们使用nn.Module类来构建自定义架构。这里,我们继承了nn.Module类并将我们的类命名为Darknet。我们使用成员变量blocks 、net_info和module_list初始化网络。原创 2025-06-03 01:09:30 · 3 阅读 · 0 评论 -
从《爱情岛》看图学习与图卷积网络实践
在数据学习的领域中,我们常常习惯于从表格数据着手。然而,数据的结构丰富多样,其中图数据结构却时常被忽视。多数人对数据表颇为熟悉,作为主流的数据结构,表格数据拥有庞大的工具和技术生态系统。但这并不意味着我们只能局限于此。近年来,图学习领域取得了显著进展,引发了机器学习社区的浓厚兴趣。大家逐渐意识到,基于能够体现关系深度与复杂性的数据表示进行训练,具有变革性的潜力。借助图学习,我们能在众多领域获得深刻见解,推动创新解决方案的诞生。原创 2025-06-03 01:07:41 · 2 阅读 · 0 评论 -
从“HBO硅谷”中“Not a Hotdog”App学习AI技术
在HBO热门电视剧《硅谷》中,“Not a Hotdog”这款应用背后有着有趣的科学原理。剧集中看似大胆的项目背后,其实蕴含着大量真实的数学和科学知识,“Not a Hotdog”就是其中较为现实又大胆的一个。它旨在打造一款能基于图片识别食物的AI应用,可结果却滑稽地只能识别热狗,其他一概判定为“非热狗”。实际上,为该剧工作的工程师蒂姆·安格拉德(Tim Anglade)制作了一款真实可用的“Not Hotdog”应用,能在安卓和iOS系统找到。原创 2025-06-03 01:05:52 · 1 阅读 · 0 评论 -
从R-CNN到Directed Mask R-CNN:目标检测模型的演进与实践
目标检测模型主要包含三个步骤:首先是提出候选区域,输出可能包含物体的区域;接着独立处理每个区域,通过提取足够描述该区域的特征,判断是否存在物体;最后将每个区域的特征输入分类器,预测是否有物体以及物体的类别标签。R-CNN模型使用选择性搜索(Selective Search)算法生成区域建议,这些建议区域数量众多,图像中的物体可能存在于其中某一区域。之后利用在ImageNet数据集上预训练的CNN从每个区域提取特征,最后将区域特征向量输入特定类别的支持向量机(SVM)来预测物体的类别标签。原创 2025-06-03 01:04:03 · 1 阅读 · 0 评论 -
从Haskell库到多元技术探索:Edward Kmett的编程之路
在本月的《Functional Futures》节目中,嘉宾Edward Kmett,作为Groq公司的软件工程主管以及众多广泛使用的Haskell库的作者,分享了他丰富且充满波折的编程生涯经历。原创 2025-06-02 01:24:02 · 387 阅读 · 0 评论 -
从Gleam语言看编程技术与人文素养的融合
在软件开发领域,新的编程语言层出不穷,每一种都试图在性能、易用性和功能上独树一帜。Gleam语言便是其中之一,它由Louis Pilfold创造,以其独特的设计理念和技术实现,在编程世界中崭露头角。原创 2025-06-02 01:22:13 · 10 阅读 · 0 评论 -
从Flask原型到可扩展深度学习服务:uWSGI与Nginx的实践
通过使用uWSGI从Flask应用创建服务器,并将其隐藏在Nginx反向代理之后,我们成功构建了一个可轻松扩展到数百万用户的深度学习应用。该应用可以直接部署到云端供用户使用。经过一系列的步骤和优化,我们对应用的性能有了保障,不必过于担心延迟、效率和安全等问题。在后续文章中,我们将使用Docker容器和Kubernetes在谷歌云平台上部署这个深度学习应用,期待与你一同探索。原创 2025-06-02 01:20:25 · 83 阅读 · 0 评论 -
云托管Jupyter笔记本服务的选择:Google Colab的不足与替代方案
在机器学习和数据科学领域,Jupyter笔记本已成为探索相关库和算法的标准工具。如今,云托管笔记本服务众多,其中Google Colab凭借其与Google云端硬盘关联的免费GPU和存储,在ML和数据科学社区中广受欢迎。然而,它并非完美无缺。原创 2025-06-02 01:18:36 · 7 阅读 · 0 评论 -
云GPU供应商对比终极指南:打破迷雾,清晰选择
在使用GPU云服务的过程中,我们常常会感到困扰。GPU云服务供应商让识别和比较GPU硬件变得异常艰难,这种困扰还因为供应商提供的GPU实例规格各异,以及对附加组件的定义不同而愈发严重。比如,不同的供应商,我们可能需要考虑诸如添加CPU实例(像谷歌云那样)、增加内存、添加存储等隐藏成本。当在不同供应商之间进行比较时,这个过程更是变得极为复杂,毕竟各供应商使用的单位都完全不同,要进行比较着实需要花费一番功夫。为了给GPU云服务领域带来透明度,我们创建了《云GPU供应商终极指南》。原创 2025-06-02 01:16:48 · 107 阅读 · 0 评论 -
与瓦伦·奥贾博士探讨神经网络的前沿进展
在人工智能飞速发展的当下,神经网络作为核心技术领域,不断涌现出新的研究成果与应用。我们有幸与英国雷丁大学计算机科学讲师瓦伦·奥贾博士进行了一次深入访谈,他在神经网络、深度学习及计算机视觉等领域有着丰富的研究经验。接下来,让我们一同走进这场访谈,探寻神经网络领域的奥秘。原创 2025-06-02 01:14:59 · 8 阅读 · 0 评论 -
与杰伊(不纯图片)的访谈:探索函数式编程的世界
在这篇文章中,我们将深入了解杰伊,这位“不纯图片”背后的策划者。如果你在 Haskell 推特圈待过一段时间,肯定见过他的一些作品。不仅如此,他最近还开设了一个 YouTube 频道,以有趣且易懂的方式讲解函数式编程概念。我们很荣幸能与杰伊多次合作,最近一次是推出一款特别版 T 恤,庆祝 Haskell 的独特之处——惰性求值。原创 2025-06-02 01:13:10 · 7 阅读 · 0 评论 -
与Rust传道者Tim McNamara的对话:从编程模式到Rust学习
在本月的“Functional Futures”节目中,嘉宾Tim McNamara——《Rust实战》的作者、Rust的积极推广者以及多产的YouTube内容创作者,与主持人就Rust编程模式、《Rust实战》这本书、Rust初学者建议等话题展开深入讨论。原创 2025-06-02 01:11:21 · 9 阅读 · 0 评论 -
与Runtime Verification协作下的网站部署工作流解析
在与Runtime Verification的合作中,我们共同构建了一套针对小型网站的基于Nix的部署工作流。此工作流涵盖多个项目,如Kontrol(用于Solidity编写的智能合约形式验证的开发工具)、ERCx(ERC令牌测试的开发工具)以及Firefly(以太坊智能合约测试的开发工具)。下面我们将详细解析这一部署工作流。原创 2025-06-02 01:09:33 · 2 阅读 · 0 评论 -
三位工程师的Haskell编程之路:从初遇到热爱
在编程的广袤世界里,Haskell以其独特的魅力吸引着众多开发者。Serokell公司的工程师们来自不同背景,他们与Haskell的邂逅故事也各有千秋。原创 2025-06-02 01:07:44 · 5 阅读 · 0 评论 -
一文读懂:PyTorch在计算机视觉中的应用
什么是PyTorch以及为何用于计算机视觉PyTorch是一个面向Python的强大且流行的开源深度学习库,广泛应用于自然语言处理和计算机视觉等领域。它以灵活性和易用性著称,深受研究人员和从业者喜爱。在计算机视觉任务中,PyTorch允许开发人员借助各种强大工具和库轻松构建和训练深度学习模型,比如能够自定义架构和算法,这使得它在目标检测、图像分类和分割等任务中表现出色。同时,PyTorch性能卓越,能够处理庞大且复杂的数据集,是计算机视觉领域不可或缺的工具。PyTorch与其他深度学习框架的区别。原创 2025-06-02 01:05:56 · 90 阅读 · 0 评论 -
一文读懂随机森林算法及其Python实现
在机器学习领域,随机森林算法是备受瞩目的存在,它既可以用于分类任务,也能处理回归问题。本文将深入探讨随机森林算法,并展示如何使用Python中的scikit-learn库来实现它。原创 2025-06-02 01:04:08 · 5 阅读 · 0 评论 -
一文读懂迁移学习:定义、方法、优势与应用
迁移学习是一种机器学习方法,它以预训练模型为基础来训练新模型。例如,一个训练用于面部识别的模型,可经过调整用于MRI扫描分析。若从零开始训练模型识别癌症图像,收集并标记数千张相似图像难度颇大,而微调一个现成的模型则容易得多。其核心思路很简单:既然机器学习模型已掌握对特定类型图片的分类,那么它就能学会识别特定疾病的图像,比如创伤性脑损伤或癌症转移。通过迁移学习,我们能更快获得高精度的结果。自然语言处理任务也是如此。若一个模型已针对英语文本的情感分析进行训练,它便可用于构建德语或西班牙语相同任务的模型。原创 2025-06-02 01:02:19 · 244 阅读 · 0 评论 -
一文读懂边缘AI:原理、应用与发展
边缘AI是一种开发和部署人工智能系统的方法。它利用边缘计算在用户设备上执行机器学习模型,而不是将数据发送到服务器。比如说,你的苹果手表收集了你心跳及其他参数的数据,边缘AI并非把这些数据发送到公司服务器,通过神经网络得出分析结果,而是直接在手表上部署神经网络进行处理。边缘AI的另一个重要应用场景是自动驾驶汽车。在道路上,很多情况都对响应速度要求极高,实时处理数据至关重要,而边缘计算能让这一目标更容易实现。这些边缘设备涵盖了从智能手机、智能摄像头、传感器到工业机器人和自动驾驶汽车等各种设备。原创 2025-06-02 01:00:31 · 10 阅读 · 0 评论