t0_54program
这个作者很懒,什么都没留下…
展开
-
AI助力基因遗传疾病检测:现状与未来
在现代医学领域,与基因紊乱相关疾病的早期检测至关重要。像肺癌,早期诊断的患者5年生存率可达57%,而四期癌症患者生存率仅3%。阿尔茨海默病的早期检测,能让患者改变生活方式、参与临床试验并提前治疗脑部退化症状,有效延长生命。尽管基因检测对评估晚发性阿尔茨海默病的可能性有帮助,对早发性阿尔茨海默病也有指示作用,但其检测技术仍有待完善。目前,仅基于生物学研究的疾病检测技术多样,虽对特定病例精确,但通常需对疑似患者进行额外复杂医疗检测,成本高昂,不适合健康人群定期检测。原创 2025-04-22 19:10:23 · 525 阅读 · 0 评论 -
AI创业公司从1到百万用户的可扩展性之路
在这篇长文中,我们探讨了公司随着用户增长,基础设施的演变过程。扩展应用并非易事,对机器学习系统而言更是如此,因其带来了许多传统软件不存在的新问题。虽本文未涵盖所有解决方案和问题,但希望能作为指南,帮助理解基础知识,以便进一步探索各种架构和技术。后续可深入学习谷歌云提供的MLOps(机器学习操作)基础课程。本文是深度学习生产系列的一部分,在继续部署之前,通过本文让大家对实际项目有清晰认知。接下来将深入探讨Kubernetes,值得期待。原创 2025-04-22 19:08:35 · 21 阅读 · 0 评论 -
AI伦理:现状、问题与原则
近年来,人工智能伦理成为了热门话题。自动驾驶汽车、人脸识别以及关键评估系统等前沿应用,都引发了诸多伦理思考。作为AI开发者,Serokell意识到这项技术背后的伦理问题,并严格遵循最高的伦理标准,同时也呼吁开发者社区就这些对行业及社会发展至关重要的问题展开对话。本文将探讨当下AI面临的常见问题,以及AI伦理学家们尝试解决这些问题的方式。原创 2025-04-22 19:06:47 · 36 阅读 · 0 评论 -
AI伦理:亟待解决的十大问题
如今,人工智能已深度融入我们生活的方方面面,从帮助我们挑选电视节目到辅助商业决策,它在处理大量信息、优化流程、检测欺诈以及研发新药等诸多领域都展现出强大的能力。然而,从伦理的角度审视,人工智能带来的疑问远比答案更多。我们有必要深入探讨这些伦理问题,以便更好地应对人工智能快速发展所带来的挑战。原创 2025-04-22 19:04:58 · 32 阅读 · 0 评论 -
AI 助力发型变换:HairFastGAN 的奇妙之旅
在生成式人工智能的世界里,如今人们能够尝试不同发型,为自己打造富有创意的造型。无论是考虑彻底改变形象,还是仅仅想换个新面貌,想象自己拥有新发型的过程既令人兴奋,又有些让人望而却步。不过,借助人工智能(AI)技术,发型变换领域正经历一场突破性的革命。借助 AI 驱动的虚拟发型设计平台,人们足不出户就能探索从经典发型到 90 年代风格等无尽的发型选择。这些创新平台利用先进算法和机器学习的力量,使用户能够实时以数字化方式试戴各种发型,带来前所未有的无缝且沉浸式体验。原创 2025-04-22 19:03:10 · 27 阅读 · 0 评论 -
AI Wiki:让人工智能世界不再令人望而生畏
AI Wiki以通俗易懂的定义和直观的图示,阐释了人工智能、机器学习以及深度学习等领域的诸多话题。在机器学习训练过程中,人们也常常会对epoch(轮数)、iteration(迭代次数)以及batch size(批量大小)的正确数值感到困惑。无论是刚踏入该领域的新手,还是经验丰富、需要快速回顾某些主题的从业者,AI Wiki都堪称得力助手。总之,AI Wiki为我们探索人工智能世界搭建了一座便捷的桥梁,让知识触手可及。人工智能的世界常常让人感到纷繁复杂,想要弄清楚一个概念,往往又会引出更多陌生的词汇。原创 2025-04-22 19:01:22 · 311 阅读 · 0 评论 -
Agda中的依赖类型编程、定理证明与否定相关内容探究
在之前的文章中,我们向读者简要介绍了Agda中的依赖类型编程和定理证明。本文将进一步深入探讨Agda中的空类型、否定概念、Markov原理以及非构造性证明等关键内容。原创 2025-04-22 18:59:34 · 13 阅读 · 0 评论 -
6个月精通深度学习:从入门到求职的详细指南
深度学习作为当下热门的技术领域,吸引着众多初学者与进阶者投身其中。本文将为你呈现一个详细的深度学习学习路线图,助力你在6个月内获得深度学习相关的实习或全职工作机会。原创 2025-04-22 18:57:45 · 197 阅读 · 0 评论 -
3D图像生成模型:从原理到实践
扩散模型的训练过程包含正向加噪和反向去噪两个阶段。在正向过程中,模型以线性方式向训练数据添加固定量的高斯噪声;而在反向过程中,模型预测给定输入数据中添加的噪声量,并减去预测噪声以恢复更“干净”的图像。在推理阶段,去噪网络采用反向去噪过程来恢复图像样本。条件扩散模型使用相同的网络,但还会为目标数据分布添加一个条件ccc。在撰写本文时,该模型的代码尚未公开。原创 2025-04-22 18:55:57 · 137 阅读 · 0 评论 -
3D图像生成技术:探索不同模型的原理与应用
在当今数字化时代,2D图像生成已广泛应用于社交媒体内容创作、研究数据集扩充以及个人或商业图像编辑等诸多领域。然而,在视频游戏、电影制作和3D计算机辅助设计(CAD)等特定领域,对带有深度信息的3D图像需求更为迫切。为此,研究人员开发了多种模型来实现3D生成,如能生成物体新视角的Neural Radiance Fields(NeRF)、生成3D点云的Point·E,以及生成连续3D物体的DreamFusion、DreamFields和Magic3D等。接下来,让我们深入了解这些模型的具体情况。原创 2025-04-22 18:54:08 · 17 阅读 · 0 评论 -
25个免费数据集助力机器学习模型开发
机器学习专业人员常常致力于寻找多样化的数据集,以开发创新且强大的模型。本文精心整理了25个免费数据集,并按行业进行分类,希望能帮助你开启相关研究或项目。原创 2025-04-22 18:52:20 · 17 阅读 · 0 评论 -
2019年计算机视觉领域GANs的两项重要成果:GauGAN与SinGAN
我们详细审视了基于分割图的图像合成以及从单张图像学习的顶尖方法。对于求知若渴的读者,推荐探索该领域的开放性问题,也可查阅相关论文,还可参考Keras和Pytorch中出色的GAN代码库。这是该系列文章的最后一篇,但GANs在计算机视觉领域的系列将持续更新,未来会纳入新论文以及可能遗漏的现有论文。同时,作者发布了一本免费电子书,总结了相关结论并整合了所有文章,感兴趣的读者可订阅时事通讯获取。原创 2025-04-22 18:50:31 · 10 阅读 · 0 评论 -
2019 年公司技术进展与动态
Michelson 正是用于在 Tezos 区块链上编写智能合约的语言,它是一种基于栈且类型严格的语言,其设计目的在于为合约的形式验证提供便利。我们 Haskell 领域的专家 Danya Rogozin 因在 Agda 中关于构造性与非构造性证明的三部曲而声名远扬,他已准备好在五月参加俄罗斯唯一的函数式编程会议——FPure 大会。届时,Danya 将分享我们在 Haskell 中的机器学习探索历程,并探讨我们针对类型安全维度问题给出的解决方案。然而,若不将进步展示出来,内部工作的意义便难以凸显。原创 2025-04-22 18:48:43 · 11 阅读 · 0 评论 -
2018年计算机视觉中顶尖GAN技术全解析
生成对抗网络(GANs)自问世以来,在计算机视觉领域展现出巨大的潜力。2018 年,一些卓越的 GAN 模型在计算机视觉应用中表现突出,本文将深入剖析这些模型,为读者呈现该领域的前沿技术。原创 2025-04-22 18:46:55 · 14 阅读 · 0 评论 -
1x1卷积在卷积神经网络中的多重应用
本文探讨了1x1卷积及其在卷积神经网络中的各种用途。我们研究了1x1卷积的过程,以及它如何作为降维工具、增加非线性的来源,以及在CNN架构中排除全连接层并缓解过拟合问题的手段。1x1卷积是许多先进卷积神经网络架构的常用方法,深入理解这一概念对掌握CNN技术至关重要。原创 2025-04-22 18:45:06 · 19 阅读 · 0 评论 -
生成对抗网络(GANs):原理、实现与可视化分析
本文实现了一个概念验证的 GAN 模型,用于从一个非常简单的数据分布中生成数据。可视化判别器更新前后的情况。更改层的激活函数,观察训练和生成样本的差异。添加更多层和不同类型的层,观察对训练时间和训练稳定性的影响。修改生成数据的代码,使其包含来自两条不同曲线的数据。修改上述代码,使其适用于更复杂的数据,如 MNIST、CIFAR - 10 等。在未来的工作中,我们将讨论 GANs 的局限性以及解决这些问题所需的修改。通过不断地研究和实践,相信 GANs 将在更多领域发挥出巨大的潜力。原创 2025-04-16 02:16:22 · 45 阅读 · 0 评论 -
移动设备上文本到图像扩散模型的新突破
蒸馏管道”指的是将大型复杂的机器学习模型压缩和优化为更小、更简单模型的过程。在SD - v1.5上进行步骤蒸馏,将其作为教师模型,目标是获得一个16步的UNet模型,其性能与50步的模型相当。然后,以这个16步的UNet作为新的教师模型,训练一个高效的8步UNet。通过这种方式,从50步模型过渡到16步模型,最终提炼为8步模型,关键在于利用中间模型作为教师,将其知识提炼到较小的版本中。此外,论文还引入了一种CFG(上下文无关文法)感知的步骤蒸馏方法,进一步提高了学生模型的性能。原创 2025-04-16 02:13:44 · 102 阅读 · 0 评论 -
DeciDiffusion:文本到图像生成模型的新突破
尽管DeciDiffusion有诸多优点,但也存在一些局限性。它无法生成完全逼真的照片级图像,图像中常见伪影;处理复杂构图仍然是一个挑战,模型的自动编码方面也存在一定损失;生成完美的人脸和人体形态对于每个扩散模型来说都是难题;而且DeciDiffusion主要针对英文描述进行了优化,对其他语言的处理效果不佳。总体而言,DeciDiffusion是生成式AI应用的一项重要进步。它不仅优化了内容创作和广告等实时项目,还大幅降低了运营成本。与SD相比,DeciDiffusion在训练和推理方面都更快、更高效。原创 2025-04-15 02:22:49 · 16 阅读 · 0 评论 -
深度强化学习:打造超级马里奥兄弟通关智能体
强化学习是一类学习算法,在这类算法中,智能体通过与环境进行交互来学习。简单来说,智能体要学会采取行动,让自己从当前状态达到最优可达状态。为了更好地理解,我们来看一个例子。假设有一个3×3的网格,这个网格就是智能体的环境,网格中的每个方块被称为一个状态,环境有起始状态(绿色高亮)和结束状态(红色高亮)。智能体就像人类一样,通过一次次的“尝试”(即一个回合)来学习。每个回合开始时,智能体从起始状态出发,不断采取行动,直到到达结束状态,此时回合结束,新的回合又会从起始状态重新开始。原创 2025-04-15 02:20:26 · 61 阅读 · 0 评论 -
FLUX:图像生成领域的新突破
通过对FLUX的详细研究和实际测试,可以确定它是迄今为止最强大、最具能力的图像生成模型。它代表了图像合成技术的显著进步,为未来这些模型的发展带来了更多的可能性。如果你对图像生成技术感兴趣,不妨尽快在DigitalOcean GPU Droplets上尝试使用FLUX,借助NVIDIA H100,你可以轻松在短时间内生成令人惊叹的图像。原创 2025-04-15 02:17:15 · 20 阅读 · 0 评论 -
图神经网络:原理、架构与应用
图神经网络是一个非常活跃的新兴研究领域,具有巨大的潜力,因为现实生活中有许多数据集可以以图的形式进行结构化。未来,我们可以利用 PyTorch Geometric 来处理图数据并构建自己的图神经网络。如果你想深入了解图神经网络,推荐观看 Petar Veličković 关于图神经网络理论基础的讲座,以及 Aleksa Gordić 在其 AI Epiphany 频道上的优秀视频系列。原创 2025-04-15 02:15:03 · 15 阅读 · 0 评论 -
数据仓库、数据湖与数据湖仓:数据存储方案全解析
在当今数字化时代,数据的存储和管理是企业和组织面临的重要挑战之一。目前,最流行的数据存储解决方案包括数据仓库、数据湖和数据湖仓。下面,我们将详细介绍这些存储选项,并分析它们在特定用途中的优缺点。原创 2025-04-15 02:12:25 · 29 阅读 · 0 评论 -
图像表示:从传统方法到现代技术
在当今的计算机视觉领域,图像表示是一项至关重要的任务。它不仅能够帮助我们更高效地处理和分析图像,还在图像生成、分类等多个方面发挥着关键作用。原创 2025-04-15 02:09:41 · 120 阅读 · 0 评论 -
深入探究迁移学习:概念、方法与应用
迁移学习是一种机器学习方法,它以预训练模型为基础来训练新的模型。举例来说,一个经过面部识别训练的模型可以被调整用于MRI扫描分析。要是从头开始训练模型,收集并标记数千张类似的癌症图像是非常困难的,但对现成的模型进行微调则容易得多。其原理很简单:既然机器学习模型已经知道如何对某类图片进行分类,那么它就能学会识别特定疾病的图像,比如创伤性脑损伤或癌症转移。通过迁移学习,我们能够更快地获得非常准确的结果。原创 2025-04-15 02:07:00 · 28 阅读 · 0 评论 -
深入理解深度学习中的梯度下降算法
深度学习在很大程度上是关于解决大规模、复杂的优化问题。神经网络本质上是一个非常复杂的函数,由数百万个参数组成,代表着一个问题的数学解决方案。以图像分类任务为例,AlexNet 就是一个数学函数,它接受一个表示图像 RGB 值的数组,并输出一系列类别得分。原创 2025-04-15 02:04:02 · 123 阅读 · 0 评论 -
AI应用构建器:助力企业应用开发的利器
AI应用构建器是利用人工智能技术来促进移动和网页应用程序创建的平台。它们提供预建模板、拖放式界面和AI驱动的自动化功能,让专业开发者能够加快应用构建的过程。例如,一个小型电商企业想要快速搭建一个移动购物应用,使用AI应用构建器就可以借助其预建模板和自动化功能,在短时间内完成应用的初步搭建。优势:具有灵活性,可用于广泛的任务,包括编码协助、调试和生成想法;易于使用,通过对话式提示即可操作;能根据交互和用户反馈不断改进。劣势:回答有时可能不准确或需要进一步完善;对于非常具体的技术场景缺乏深入的上下文理解;原创 2025-04-15 02:01:23 · 157 阅读 · 0 评论 -
ChatGPT 替代品大揭秘:功能、优缺点全解析
ChatGPT 的问世宛如一颗重磅炸弹,促使众多科研实验室纷纷投身于创建或改进自家的 AI 聊天机器人的热潮中,一场激烈的聊天机器人竞赛就此拉开帷幕。如今的市场上,无论是免费的还是付费的聊天机器人,都如繁星般琳琅满目。接下来,我们就深入探究一下这些 ChatGPT 替代品的强大功能以及它们各自的优缺点。原创 2025-04-15 01:58:05 · 53 阅读 · 0 评论 -
探索小型大语言模型TinyLlama的魅力
TinyLlama是一个参数仅为11亿的紧凑型语言模型,它在大约1万亿个标记上进行了约3个周期的预训练。该模型基于Llama 2的架构和分词器构建,是开源社区的一项新成果。TinyLlama不仅提高了计算效率,而且在各种下游任务中,其表现超过了其他同等规模的语言模型,展现出了卓越的性能。与其他类似规模的开源语言模型相比,TinyLlama表现出色。在各种下游任务中,它都超越了OPT - 1.3B和Pythia1.4B。原创 2025-04-15 01:54:53 · 21 阅读 · 0 评论 -
使用PyTorch从零实现StyleGAN1:详细指南
在当今的生成对抗网络(GANs)领域中,StyleGAN是最为出色的模型之一。本文将基于论文“A Style-Based Generator Architecture for Generative Adversarial Networks”,使用PyTorch对StyleGAN进行简洁、清晰且易于理解的实现,同时尽可能复现原论文的内容。原创 2025-04-15 01:49:57 · 21 阅读 · 0 评论 -
Gemma 2:开启人工智能普及新时代
在当今时代,人工智能(AI)被寄予解决世界重大问题的厚望,然而要实现这一目标,前提是让更多人掌握使用它的工具。2024 年 6 月 27 日,谷歌作为人工智能技术领域的领军者,推出了 Gemma 2 9B 和 27B 这一组轻量级、先进的人工智能模型,这一举措成为人工智能民主化进程中的一个重要里程碑。原创 2025-04-15 01:47:00 · 23 阅读 · 0 评论 -
利用LSTM网络进行天气预测:原理与实践
LSTM网络属于循环神经网络的一种,它与其他神经网络的不同之处在于具有时间维度,能够考虑时间和序列因素。实际上,LSTM被认为是RNN中最有效且广为人知的子类,它属于一类用于识别数据序列模式的人工神经网络,适用于处理包括数值时间序列数据在内的各种数据。经典的RNN理论上能够跟踪输入序列中的任何长期依赖关系,但在实际应用中存在局限性。例如,在反向传播网络中,长期梯度往往会趋近于零或趋于无穷大,这取决于计算过程中使用的有限精度数字集。而LSTM的设计初衷就是为了解决RNN中的“长期依赖”问题。原创 2025-04-15 01:44:31 · 66 阅读 · 0 评论 -
利用dlib库实现个人照片中的人脸识别
人脸识别是一种通过分析图片、视频片段或实时画面中的人脸来识别人类的技术。直到最近,人脸识别对于计算机视觉来说还是一个难题。但深度学习技术的引入改变了这一局面,它能够处理大量的人脸数据,分析丰富复杂的人脸图像,使得人脸识别变得更加容易,甚至在某些方面比人类的视觉识别能力还要出色。原创 2025-04-14 02:10:15 · 60 阅读 · 0 评论 -
YOLO-World:零样本目标检测的新突破
YOLO-World是一种先进的实时检测器,旨在提高实际应用中的效率和开放词汇能力。它是对传统YOLO架构的全新补充,支持开放词汇预训练和检测,利用RepVL-PAN有效集成视觉和语言信息。通过对不同图像的实验,充分展示了YOLO-World卓越的速度和性能,凸显了在紧凑模型上进行视觉 - 语言预训练的优势。我们有理由相信,YOLO-World将成为现实世界中开放词汇检测任务的新标杆。原创 2025-04-14 02:07:55 · 36 阅读 · 0 评论 -
1871创新中心:搭建机器学习学术与企业应用的桥梁
在当今科技飞速发展的时代,机器学习和人工智能领域的发展日新月异。学术研究与企业应用之间的有效衔接,对于推动行业的进步至关重要。今天,我们就来深入了解一下芝加哥的1871创新中心在这方面所做出的努力。原创 2025-04-14 02:05:46 · 87 阅读 · 0 评论 -
探索生成式人工智能与生成对抗网络
生成式人工智能,简单来说,是指那些能让机器利用文本、音频文件和图像等创造或生成内容的算法。与常见的判别式模型不同,判别式模型如卷积神经网络或循环神经网络,主要用于区分数据中的模式,将其分类到不同类别中,像图像识别、皮肤癌诊断、以太坊价格预测等应用都属于判别式模型的范畴。而生成式模型则能够生成新的数据模式,从而产生新的图像、文本和音乐等。从严格的数学形式来看,判别式模型试图估计后验概率 p(y | x),也就是给定输入样本(如手写数字图像)时输出样本(手写数字)的概率。原创 2025-04-14 02:03:21 · 21 阅读 · 0 评论 -
深入了解Bagging集成方法:减少方差与防止过拟合
集成方法,正如其名,是指一组模型协同工作以解决共同问题。它不像传统方法那样依赖单一模型来寻求最佳解决方案,而是利用多种不同方法的优势来弥补每个模型的个体弱点。最终的模型集合应该比任何单个模型都更不容易出错。Bagging,也称为自助聚合,是多个预测模型的聚合。每个模型单独训练,然后通过平均过程进行组合。Bagging的主要目标是实现比任何单个模型更小的方差。要理解Bagging,我们首先要了解自助法(Bootstrapping)。Bagging通过减少方差提高了模型的精度和准确性,但代价是计算成本较高。原创 2025-04-14 02:01:02 · 48 阅读 · 0 评论 -
自动语音识别:深度学习方法综述
自动语音识别,简单来说,就是把人类的语音识别出来并转化成文字。早期的研究方法主要集中在手动特征提取和一些传统技术上,比如高斯混合模型(GMM)、动态时间规整(DTW)算法以及隐马尔可夫模型(HMM)。这些方法在当时为语音识别技术的发展奠定了基础,但随着技术的进步,它们也逐渐暴露出一些局限性。综上所述,深度架构已经对自动语音识别产生了重大影响。卷积神经网络、循环神经网络和变换器等技术都得到了成功的应用,当今的最先进模型通常结合了上述多种技术。原创 2025-04-14 01:58:05 · 25 阅读 · 0 评论 -
深入理解贝叶斯决策理论及其在机器学习中的应用
在模式分类领域,贝叶斯决策理论是一种重要的统计方法。它借助概率进行分类,并衡量将输入分配到特定类别的风险(即成本)。本文将逐步剖析贝叶斯决策理论的各个核心概念,最后探讨其在机器学习中的应用。原创 2025-04-14 01:55:32 · 22 阅读 · 0 评论 -
从零开始在Python中实现梯度下降算法优化人工神经网络参数
到目前为止,我们已经成功实现了适用于1个输入或2个输入的GD算法。在下一个教程中,我们将扩展之前的实现,使算法能够处理更多的输入。通过下一个教程中讨论的例子,我们将推导出一个通用规则,让GD算法能够处理任意数量的输入。原创 2025-04-14 01:52:47 · 16 阅读 · 0 评论 -
APISR:动漫超分辨率技术的重大突破
超分辨率技术的重要性不言而喻,它能让那些分辨率较低的老动漫进行放大处理,以满足现代显示标准,同时还能保持视觉上的逼真度,让观众在不同尺寸和分辨率的屏幕上都能有良好的观看体验。在实际操作中,如果使用NVIDIA A100 Tensor Core GPU(由NVIDIA Ampere架构提供支持,为人工智能、数据分析和高性能计算提供了无与伦比的加速,其80GB GPU拥有世界上最快的内存带宽,超过每秒两TB),启动机器后,将特定的代码复制粘贴到笔记本中并运行,就可以生成Gradio网络应用程序链接。原创 2025-04-14 01:50:11 · 149 阅读 · 0 评论