新冠疫情的爆发给全球带来了前所未有的冲击,从医疗系统的不堪重负,到经济的受挫,以及人们生活方式的巨大改变。在这场与病毒的战斗中,检测是至关重要的一环。本文将深入探讨新冠检测的重要性、现有检测方法的挑战,以及深度学习如何助力提高新冠检测质量。
检测在应对疫情中的重要性
世界卫生组织(WHO)强调“检测、检测、再检测”,尽可能对有症状的人进行新冠病毒检测,无论其旅行或接触史。新冠病毒存在5 - 14天的潜伏期,在此期间,感染者可能无明显症状却在不知不觉中传播病毒。若能及时检测,就能尽早发现感染者并进行隔离,有效控制病毒传播。
当前检测试剂盒面临的挑战
- RT - PCR检测的不足:目前检测新冠患者的金标准是逆转录聚合酶链反应检测(RT - PCR)。它需从患者鼻或咽取拭子样本,送往有相应机器的检测中心。然而,此方法存在诸多问题。样本运输时间过长,病毒可能死亡,导致检测结果呈假阴性;检测成本较高;且该检测灵敏度较低,假阴性和假阳性情况较多。此外,样本采集过程可能给患者带来不适。
- CT扫描的局限性:研究表明,在诊断新冠方面,CT扫描比RT - PCR灵敏度更高。例如,对1014名新冠患者的研究显示,RT - PCR仅能检测出59%的阳性患者,而CT扫描能检测出88%。但CT扫描后,仍需专业放射科医生确认是否感染新冠,而放射科医生数量有限,在疫情爆发时可能无法及时处理大量病例。
深度学习用于新冠诊断的研究进展
- 基于CT扫描数据的处理:CT扫描数据可以是3 - D体积,需用3 - D卷积网络处理;也可以是多个横截面切片,可用2 - D神经网络处理。无论哪种方式,都需先从CT扫描中提取感兴趣区域(ROI),再将其送入深度神经网络进行分类,判断是否为新冠病例。
- 具体研究案例
- 《深度学习系统筛查2019冠状病毒病肺炎》:该研究先通过图像预处理方法分割肺部,再用VNET20 - 基于的分割模型VNET - IR - RPN17提取ROI,然后将每个ROI通过分类模型得到类别概率,最后用Noisy - or - 贝叶斯函数组合这些概率。该研究还利用新冠病毒肺部阴影多在边缘的特点作为网络输入。
- 《新冠疫情的快速AI开发周期:使用深度学习CT图像分析进行自动检测和患者监测的初步结果》:作者使用3 - D U - Net架构从扫描中提取肺部,将整个肺部送入分类网络,用Grad - CAM技术创建肺部“热图”,通过多个切片计算类别概率,若多数切片显示新冠为最高类别概率,则判定患者为阳性。此外,还结合现成软件检测结节和小阴影,创建3 - D可视化并得出“新冠评分”。
- 《人工智能在胸部CT上区分新冠与社区获得性肺炎》:提出一种名为CovNet的架构,对同一CT扫描的多个2 - D切片提取特征向量,经最大池化得到单个特征向量,再送入全连接层进行分类。
深度学习诊断系统结果的解读及注意事项
- 评估指标:评估新冠诊断方法时,仅看准确率不够。因为实际检测中,感染人数占比少,若一个诊断方法将所有结果判定为阴性,准确率可达80%,但毫无用处。因此,需关注其他指标,如灵敏度(真阳性率),反映正确识别阳性患者的比例;特异性(真阴性率),体现正确识别阴性患者的比例;还有精度(诊断为阳性的患者中实际患病的比例)、F1分数(综合精度和灵敏度)以及受试者工作特征曲线下面积(AUROC)。AUROC衡量分类器区分两类的能力,理想情况是阳性样本得分远高于阈值,阴性样本得分远低于阈值。
- 注意事项:肺炎是临床诊断,放射科医生诊断时不仅看CT扫描,还会综合血液检查、临床病史和其他症状。虽然深度学习有助于诊断新冠,但不能单纯依靠CT扫描诊断肺炎。放射科医生不会被取代,深度学习工具能在病例大量涌现时减轻他们的工作负担。
综上所述,深度学习在新冠检测方面展现出巨大潜力,但在实际应用中还需综合考虑多种因素,不断完善技术,以更好地应对疫情挑战。