在当今的计算机视觉领域,目标检测是一项至关重要的任务,而YOLO(You Only Look Once)系列算法因其高效性和准确性备受关注。本文将详细介绍如何在Jupyter Notebook环境中,利用YOLOv7模型对自定义数据集进行训练。
前期准备
- 环境与基础设置:开始之前,你需要具备一定的Python编程经验和深度学习基础知识,并且拥有一台性能足够强大的机器。若没有GPU,DigitalOcean GPU Droplets是个不错的选择。首先,克隆YOLOv7代码仓库,并安装运行所需的依赖包。在终端(或Jupyter Notebook的单元格魔法)中输入
pip install -r requirements.txt
即可完成安装,不过若在DigitalOcean的Jupyter Notebook中工作,这些包已预装,无需此步骤。之后,导入一系列必要的Python模块,如torch
、Image
等,完成Notebook的设置。 - 数据集获取:本教程使用来自MakeML的道路标志目标检测数据集,可通过Kaggle获取。先创建一个名为
Road_Sign_Dataset
的目录来存放数据集,该目录需与克