在机器学习领域,训练模型往往需要大量数据,但数据并非总是唾手可得。这时,迁移学习就发挥了关键作用,它能够借助先前训练好的模型。本文将深入探讨迁移学习的定义、方法、优势、应用,同时讨论不同的迁移学习策略,并介绍一些预训练模型。
什么是迁移学习?
迁移学习是一种机器学习方法,它以预训练模型为基础来训练新模型。例如,一个训练用于面部识别的模型,可经过调整用于MRI扫描分析。若从零开始训练模型识别癌症图像,收集并标记数千张相似图像难度颇大,而微调一个现成的模型则容易得多。
其核心思路很简单:既然机器学习模型已掌握对特定类型图片的分类,那么它就能学会识别特定疾病的图像,比如创伤性脑损伤或癌症转移。通过迁移学习,我们能更快获得高精度的结果。
自然语言处理任务也是如此。若一个模型已针对英语文本的情感分析进行训练,它便可用于构建德语或西班牙语相同任务的模型。
迁移学习如何工作?
制定迁移学习策略时,首先要回答以下问题:
- 从源模型到目标模型可迁移哪些知识,以提升目标任务的执行效果?
- 怎样将从源模型学到的知识应用于当前项目或领域?
- 如何避免模型过拟合?