AI:人工智能的简介之AI领域基础概念术语解释之《Google发布机器学习术语表 (中英对照)》、机器学习、深度学习、数据挖掘中常见关键词

超参数 (hyperparameter)

超平面 (hyperplane)

I

独立同分布 (i.i.d, independently and identically distributed)

推断 (inference)

输入函数 (input function)

输入层 (input layer)

实例 (instance)

可解释性 (interpretability)

评分者间一致性信度 (inter-rater agreement)

迭代 (iteration)

K

Keras

核支持向量机 (KSVM, Kernel Support Vector Machines)

L

L1 损失函数 (L₁ loss)

L1 正则化 (L₁ regularization)

L2 损失函数 (L₂ loss)

L2 正则化 (L₂ regularization)

标签 (label)

有标签样本 (labeled example)

lambda

层 (layer)

Layers API (tf.layers)

学习速率 (learning rate)

最小二乘回归 (least squares regression)

线性回归 (linear regression)

逻辑回归 (logistic regression)

对数损失函数 (Log Loss)

损失 (Loss)

M

机器学习 (machine learning)

均方误差 (MSE, Mean Squared Error)

指标 (metric)

Metrics API (tf.metrics)

小批次 (mini-batch)

小批次随机梯度下降法 (SGD, mini-batch stochastic gradient descent)

ML

模型 (model)

模型训练 (model training)

动量 (Momentum)

多类别分类 (multi-class classification)

多项分类 (multinomial classification)

N

NaN 陷阱 (NaN trap)

负类别 (negative class)

神经网络 (neural network)

神经元 (neuron)

节点 (node)

标准化 (normalization)

数值数据 (numerical data)

Numpy

O

目标 (objective)

离线推断 (offline inference)

one-hot 编码 (one-hot encoding)

一对多 (one-vs.-all)

在线推断 (online inference)

操作 (op, Operation)

优化器 (optimizer)

离群值 (outlier)

输出层 (output layer)

过拟合 (overfitting)

P

Pandas

参数 (parameter)

参数服务器 (PS, Parameter Server)

参数更新 (parameter update)

偏导数 (partial derivative)

分区策略 (partitioning strategy)

性能 (performance)

困惑度 (perplexity)

流水线 (pipeline)

正类别 (positive class)

精确率 (precision)

预测 (prediction)

预测偏差 (prediction bias)

预创建的 Estimator (pre-made Estimator)

预训练模型 (pre-trained model)

先验信念 (prior belief)

Q

队列 (queue)

R

等级 (rank)

评分者 (rater)

召回率 (recall)

修正线性单元 (ReLU, Rectified Linear Unit)

回归模型 (regression model)

正则化 (regularization)

正则化率 (regularization rate)

表示法 (representation)

受试者工作特征曲线(receiver operating characteristic, 简称 ROC 曲线)

根目录 (root directory)

均方根误差 (RMSE, Root Mean Squared Error)

S

SavedModel

Saver

缩放 (scaling)

scikit-learn

半监督式学习 (semi-supervised learning)

序列模型 (sequence model)

会话 (session)

S 型函数 (sigmoid function)

softmax

稀疏特征 (sparse feature)

平方合页损失函数 (squared hinge loss)

平方损失函数 (squared loss)

静态模型 (static model)

平稳性 (stationarity)

步 (step)

步长 (step size)

随机梯度下降法 (SGD, stochastic gradient descent)

结构风险最小化 (SRM, structural risk minimization)

总结 (summary)

监督式机器学习 (supervised machine learning)

合成特征 (synthetic feature)

T

目标 (target)

时态数据 (temporal data)

张量 (Tensor)

张量处理单元 (TPU, Tensor Processing Unit)

张量等级 (Tensor rank)

张量形状 (Tensor shape)

张量大小 (Tensor size)

TensorBoard

TensorFlow

TensorFlow Playground

TensorFlow Serving

测试集 (test set)

tf.Example

时间序列分析 (time series analysis)

训练 (training)

训练集 (training set)

转移学习 (transfer learning)

真负例 (TN, true negative)

真正例 (TP, true positive)

真正例率(true positive rate, 简称 TP 率)

U

无标签样本 (unlabeled example)

非监督式机器学习 (unsupervised machine learning)

V

验证集 (validation set)

W

权重 (weight)

宽度模型 (wide model)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值