1.背景
计算机视觉技术,是以摄像头作为传感器来获取二维图像数据,并依靠计算机运用各类算法对这些图像数据展开处理。依据所采用视觉传感器数量的差异,可分为单目、双目以及多目视觉这几类。单目视觉依赖单摄像头获取二维平面图像,在知晓物体实际尺寸的前提下,结合相机成像模型能够计算出距离,但这种单一的 2D 图像在深度感知能力上存在局限,且较易受到动态背景的干扰,通常被应用于缺陷检测、目标识别等相关领域。多目视觉在集成方面难度较大,不但对计算机性能有着很高的要求,其数据处理也无法满足实时性的需求。与之不同的是,双目视觉通过模拟人类的双眼,能够精准地感知立体世界,具备出色的深度感知能力,同时还拥有良好的稳定性和实时性。
2.概述
双目立体视觉作为计算机视觉领域关键的分支之一,其技术原理主要是利用两个相同的图像传感器来采集左右视图,随后通过各种算法处理,从而获取目标物体的各类特征信息。其通过模拟人类利用双眼判断场景中物体信息的能力,以两台相机替代人眼,从不同角度获取场景信息,并且以计算机代替人脑来计算场景中同一物体在图像中的视差,进而获取场景中物体的三维信息。
在测距(深度测量)、三维重建和自动驾驶等诸多领域,双目视觉技术都占据着举足轻重的地位。运用双目立体视觉技术进行测距时,通过两个相机拍摄场景图像,再利用立体匹配算法对获取到的两张图像进行匹配,找出两张图像中表示同一目标物体的同名点,得到相应的视差图,据此计算出场景中目标物体的深度信息,实现测距功能。相较于其他测距方式,双目立体视觉测距无需发射信号或制作图案,仅需拍摄场景图像,测量方式简便,且摄像机成本较低,应用场景广泛,还能避免对一些表面敏感的物体造成损伤。它具备诸多优点,如硬件集成较为简单,适用于多种类型的嵌入式设备,并且具有较好的实时性,能够满足实验室以及工业生产等多种环境的需求。
3.相关流程
双目立体视觉测距技术通常涵盖以下几个重要步骤:
-
图像采集 :这是双目立体视觉的基础环节,通过双目摄像头获取待测距物体的左右视图。
-
相机标定 :该步骤目的是在通过特定的方法计算出三维世界、相机和图像之间的坐标转换关系,从而求得相机的内部参数和外部参数。在众多标定算法中,张正友标定算法因标定过程简单、成本低廉且精度较高,在双目视觉标定研究中得到了广泛的应用。
-
立体校正 :对左右图像进行优化处理,消除畸变等误差的影响,并将左右图像中待匹配的同名点校正到同一水平线上,为后续的立体匹配创造良好条件。
-
立体匹配 :作为双目立体视觉技术的核心环节,图像的匹配精度直接关系到后续的双目测距精度。通过将左右图像中的同名点进行匹配,得到视差图,其匹配结果会对计算的深度值产生直接影响。
-
计算距离 :依据相似三角形原理,根据视差信息计算对应位置的深度信息,最终得出距离。
PS:亲爱的读者朋友们,大家好!首先非常感谢您抽出宝贵的时间阅读我的这篇博客。我想在此特别说明一下,这篇博客仅仅是我在个人学习、探索以及实践过程中的一个记录。我深知自己并非该领域的绝对专家,知识水平和实践经验都有限。因此,我不能确保博客中所提及的所有信息、观点和方法都真实和准确。