Scala

第三章第八节 Spark-SQL核心编程(七)Spark-SQL连接HiveApache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)、Hive 查询语言(HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。使用方式分为内嵌Hive、外部Hive、Spark-SQL CLI、Spark beeline 以及代码操作。1)内嵌的 HIVE如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可。但是在实际生产活动当中,几乎没有人去使用内嵌Hive这一模式。外部的 HIVE在虚拟机中下载以下配置文件:如果想在spark-shell中连接外部已经部署好的 Hive,需要通过以下几个步骤:➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下,并将url中的localhost改为node01➢ 把 MySQL 的驱动 copy 到 jars/目录下➢ 把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下➢ 重启 spark-shell3)运行 Spark beeline(了解)Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore进行交互,获取到 hive 的元数据。如果想连接 Thrift Server,需要通过以下几个步骤:➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下➢ 把 Mysql 的驱动 copy 到 jars/目录下➢ 把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下➢ 启动 Thrift Server➢ 使用 beeline 连接 Thrift Serverbeeline -u jdbc:hive2://node01:10000 -n root4)运行Spark-SQL CLISpark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似于 Hive 窗口。操作步骤:将mysql的驱动放入jars/当中;将hive-site.xml文件放入conf/当中;运行bin/目录下的spark-sql.cmd 或者打开cmd,在D:\spark\spark-3.0.0-bin-hadoop3.2\bin当中直接运行spark-sql可以直接运行SQL语句,如下所示:5)代码操作Hive1.导入依赖。<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-hive_2.12</artifactId>    <version>3.0.0</version></dependency><dependency>    <groupId>org.apache.hive</groupId>    <artifactId>hive-exec</artifactId>    <version>2.3.3</version></dependency>可能出现下载jar包的问题:D:\maven\repository\org\pentaho\pentaho-aggdesigner-algorithm\5.1.5-jhyde2.将hive-site.xml 文件拷贝到项目的 resources 目录中。3.代码实现。val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hive")val spark:SparkSession = SparkSession.builder()  .enableHiveSupport()  .config(sparkConf)  .getOrCreate()spark.sql("show databases").show()spark.sql("create database spark_sql")spark.sql("show databases").show()注意:如果在执行操作时,出现如下错误:可以在代码最前面增加如下代码解决:System.setProperty("HADOOP_USER_NAME", "node01")此处的 node01 改为自己的 hadoop 用户名称在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址: config("spark.sql.warehouse.dir", "hdfs://node01:9000/user/hive/warehouse")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值