YOLO系列
YOLO- V1
经典的one-stage方法
You Only Look Once,名字就已经说明了一切
把检测问题转化成回归问题,一个CNN就搞定了
可以对视频进行实时检测,应用领域非常广
网络架构
损失函数
YOLO-V2
更快更强
YOLO-V2-Batch Normalization
V2版本舍弃Dropout,卷积后全部加入Batch Normalization
网络的每一层的输入都做了归一化,收敛相对更容易
经过Batch Normalization处理后的网络会提升2%的mAP
从现在的角度来看,Batch Normalization已经成网络必备处理
V2更大分辨率
V1训练时用的是224*224,测试时使用448*448
可能导致模型水土不服,V2训练时额外又进行了10次448*448的微调
使用高分辨率分类器后,YOLOv2的mAP提升了约4%
V2网络结构
YOLO-V2-Anchor Box
通过引入anchor boxes,使得预测的box数量更多(13*13*n)
跟faster-rcnn系列不同的是先验框并不是直接按照长宽固定比给定
YOLO-V2-Directed Location Prediction
bbox:中心为(xp,yp);宽和高为(wp,hp),则:
tx=1,则将bbox在x轴向右移动wp;tx=−1则将其向左移动wp
这样会导致收敛问题,模型不稳定,尤其是刚开始进行训练的时候
V2中并没有直接使用偏移量,而是选择相对grid cell的偏移量
计算公式
感受野
特征体图的点能看到原始图像多大区域。