图像识别第十七课

YOLO系列

YOLO- V1

经典的one-stage方法

You Only Look Once,名字就已经说明了一切

把检测问题转化成回归问题,一个CNN就搞定了

可以对视频进行实时检测,应用领域非常广

网络架构

 

损失函数

 

YOLO-V2

更快更强

 YOLO-V2-Batch Normalization

V2版本舍弃Dropout,卷积后全部加入Batch Normalization

网络的每一层的输入都做了归一化,收敛相对更容易

经过Batch Normalization处理后的网络会提升2%的mAP

从现在的角度来看,Batch Normalization已经成网络必备处理

V2更大分辨率

V1训练时用的是224*224,测试时使用448*448

可能导致模型水土不服,V2训练时额外又进行了10次448*448的微调

使用高分辨率分类器后,YOLOv2的mAP提升了约4%

V2网络结构

 

YOLO-V2-Anchor Box

通过引入anchor boxes,使得预测的box数量更多(13*13*n)

跟faster-rcnn系列不同的是先验框并不是直接按照长宽固定比给定

YOLO-V2-Directed Location Prediction

bbox:中心为(xp,yp);宽和高为(wp,hp),则:

tx=1,则将bbox在x轴向右移动wp;tx=−1则将其向左移动wp

这样会导致收敛问题,模型不稳定,尤其是刚开始进行训练的时候

V2中并没有直接使用偏移量,而是选择相对grid cell的偏移量

计算公式

感受野

特征体图的点能看到原始图像多大区域。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值