开发一款结合Python与Rust的日常生活技能赚钱APP,需充分发挥两者的互补优势:**Python**用于快速原型开发、数据分析和AI推荐,**Rust**则保障高性能核心模块和内存安全。以下是完整技术方案:
---
### **一、技术选型与架构设计**
#### 1. **后端架构**
- **Rust**(Actix-web/Axum框架):核心业务逻辑、高并发交易系统、实时任务匹配引擎。
- **Python**(FastAPI/Flask):技能分类模型训练、用户行为分析、内容推荐服务。
- **数据库**:
- **PostgreSQL**:存储结构化数据(用户档案、技能任务、订单记录)。
- **Redis**:缓存热门技能任务、实时排行榜(如"今日收益Top 100")。
- **S3/MinIO**:存储用户上传的教程视频/图片。
#### 2. **前端架构**
- **跨平台框架**:Flutter(统一iOS/Android/Web界面)。
- **交互增强**:Rust编译为WebAssembly(Wasm)优化前端复杂计算(如收益模拟器)。
#### 3. **基础设施**
- **微服务拆分**:
- Rust服务:订单支付、任务匹配、实时通知。
- Python服务:技能标签提取、用户画像生成。
- **部署**:Docker容器化 + Kubernetes集群(自动扩缩容)。
- **消息队列**:Rust的**Tokio**异步运行时处理实时事件,Python的**Celery**处理离线分析任务。
---
### **二、核心功能实现**
#### 1. **技能任务市场**
- **Python数据聚合**:
- 爬取全网技能变现案例(Scrapy + Playwright),如“宠物美容接单攻略”。
- NLP关键词提取(Spacy库):
```python
# 示例:技能标签生成
import spacy
nlp = spacy.load("zh_c