Here's a comprehensive technical blueprint for a "Cooking & Tourism" app combining Python and C++:
# **Culinary Travel Companion App Architecture**
## **System Overview**
```mermaid
graph TD
A[Python Layer] --> B{Core Engine}
C[C++ Layer] --> B
B --> D[AR Cultural Experience]
B --> E[Recipe Optimization]
B --> F[Location Services]
```
---
## **Python Components (AI & Services)**
### **1. Culinary Recommendation Engine**
```python
import pandas as pd
from sklearn.neighbors import NearestNeighbors
class TravelChef:
def __init__(self):
self.recipes = pd.read_csv('global_recipes.csv')
self.model = NearestNeighbors(n_neighbors=5)
def recommend_dishes(self, location, preferences):
local_ingredients = self.get_local_ingredients(location)
filtered = self.recipes[
(self.recipes['ingredients'].apply(lambda x: any(i in local_ingredients for i in x))) &
(self.recipes['tags'].apply(lambda t: any(p in t for p in preferences)))
]
self.model.fit(filtered[['spice_level', 'cooking_time', 'popularity']])
return self.model.kneighbors([user_profile])[1]
```
### **2. Cultural Heritage API**
```python
from fastapi import FastAPI
import requests
app = FastAPI()
@app.get("/cultural-insights/{location}")
async def get_insights(location: str):
return {