基于matlab-carsim联合仿真,自适应巡航 模型预测控制matlab-carsim联合仿真模型预测控制,,自适应巡航|||跟车控制。自动保持车距。
基于模型预测控制(自带的mpc模块)和最优控制理论的Carsim与Matlab/simulink联合仿真实现汽车主动避撞和跟车功能(acc自适应巡航),包含simulink模型(其中有车辆逆纵向动力学模型、逆发动机模型、切换控制逻辑等),Carsim模型。(最好用Carsim2017版本及以上版本)
文章目录
为了实现自适应巡航控制(Adaptive Cruise Control, ACC)的模型预测控制(Model Predictive Control, MPC),并与CarSim进行联合仿真,我们需要在MATLAB中设计MPC控制器,并将其与CarSim车辆模型集成。下面提供了一个简化的示例框架,包括如何设置MPC控制器以及如何将它与CarSim集成。
1. MATLAB中的MPC控制器设计
首先,在MATLAB中设计一个用于ACC的MPC控制器。这里假设我们关注的是纵向控制,即保持与前车的安全距离和速度跟踪。
定义车辆动力学模型
% 线性化车辆纵向动力学模型
m = 1500; % 车辆质量 (kg)
A = [0 1; 0 -1/(m*0.05)]; % 假设简单的线性模型
B = [0; 1/m];
C = [1 0]; % 输出为速度
D = 0;
% 创建连续时间状态空间模型
sys = ss(A, B, C, D);
% 将系统离散化
Ts = 0.1; % 采样时间 (s)
sysd = c2d(sys, Ts);
设计MPC控制器
% 设置MPC参数
mpcobj = mpc(sysd, Ts);
% 设置权重
mpcobj.Weights.ManipulatedVariablesRate = 0.1;
mpcobj.Weights.OutputVariables = 1;
% 设置约束
mpcobj.MV.Min = -300; % 最小加速度 (N)
mpcobj.MV.Max = 300; % 最大加速度 (N)
% 设置预测和控制范围
mpcobj.PredictionHorizon = 10;
mpcobj.ControlHorizon = 2;
2. 与CarSim集成
接下来,我们需要在Simulink环境中创建一个模型,该模型包含MPC控制器和CarSim车辆模型。确保你已经安装了CarSim和Simulink接口。
Simulink模型搭建
- 添加MPC控制器块:从Simulink库浏览器中拖放“MPC Controller”块到你的模型中。
- 配置MPC控制器块:双击MPC Controller块,选择之前定义的
mpcobj
。 - 添加CarSim模块:使用CarSim提供的接口,将CarSim车辆模型导入Simulink。
- 连接信号:确保正确地连接了MPC控制器的输出(加速度命令)到CarSim车辆模型的输入(加速/减速命令)。同时,将CarSim车辆的速度和相对距离信息反馈给MPC控制器作为其输入。
3. 示例代码片段
以下是一个简化版的MATLAB脚本,展示了如何初始化并运行上述设置的Simulink模型。
function acc_mpc_simulation()
% 初始化Simulink模型
model = 'ACC_MPC_CarSim';
open_system(model);
% 设置仿真参数
set_param(model, 'StopTime', '100');
set_param(model, 'Solver', 'ode45');
% 运行仿真
sim(model);
% 获取并绘制结果
load_system(model);
plot_results();
end
function plot_results()
% 获取仿真数据
simout = sim('ACC_MPC_CarSim');
ego_speed = simout.EgoSpeed.Data;
target_speed = simout.TargetSpeed.Data;
time = simout.Time.Data;
% 绘制速度随时间变化图
figure;
plot(time, ego_speed, '-b', time, target_speed, '--r');
xlabel('Time (s)');
ylabel('Speed (m/s)');
legend('Ego Vehicle Speed', 'Target Speed');
title('Vehicle Speed Tracking with ACC and MPC');
end
请注意,这只是一个基础框架,实际应用中需要根据具体的车辆参数、控制需求以及道路状况调整模型。特别是,车辆动力学模型应该尽可能准确地反映真实情况,可能需要通过实验或更复杂的建模技术来获取。此外,还需考虑安全性和鲁棒性问题,确保控制系统能够在各种条件下稳定工作。
为了实现自适应巡航控制(ACC)的模型预测控制(MPC),并与CarSim进行联合仿真,我们需要在MATLAB中设计MPC控制器,并将其与CarSim车辆模型集成。下面提供了一个简化的示例框架,包括如何设置MPC控制器以及如何将它与CarSim集成。
1. MATLAB中的MPC控制器设计
首先,在MATLAB中设计一个用于ACC的MPC控制器。这里假设我们关注的是纵向控制,即保持与前车的安全距离和速度跟踪。
定义车辆动力学模型
% 线性化车辆纵向动力学模型
m = 1500; % 车辆质量 (kg)
A = [0 1; 0 -1/(m*0.05)]; % 假设简单的线性模型
B = [0; 1/m];
C = [1 0]; % 输出为速度
D = 0;
% 创建连续时间状态空间模型
sys = ss(A, B, C, D);
% 将系统离散化
Ts = 0.1; % 采样时间 (s)
sysd = c2d(sys, Ts);
设计MPC控制器
% 设置MPC参数
mpcobj = mpc(sysd, Ts);
% 设置权重
mpcobj.Weights.ManipulatedVariablesRate = 0.1;
mpcobj.Weights.OutputVariables = 1;
% 设置约束
mpcobj.MV.Min = -300; % 最小加速度 (N)
mpcobj.MV.Max = 300; % 最大加速度 (N)
% 设置预测和控制范围
mpcobj.PredictionHorizon = 10;
mpcobj.ControlHorizon = 2;
2. 与CarSim集成
接下来,我们需要在Simulink环境中创建一个模型,该模型包含MPC控制器和CarSim车辆模型。确保你已经安装了CarSim和Simulink接口。
Simulink模型搭建
- 添加MPC控制器块:从Simulink库浏览器中拖放“MPC Controller”块到你的模型中。
- 配置MPC控制器块:双击MPC Controller块,选择之前定义的
mpcobj
。 - 添加CarSim模块:使用CarSim提供的接口,将CarSim车辆模型导入Simulink。
- 连接信号:确保正确地连接了MPC控制器的输出(加速度命令)到CarSim车辆模型的输入(加速/减速命令)。同时,将CarSim车辆的速度和相对距离信息反馈给MPC控制器作为其输入。
3. 示例代码片段
以下是一个简化版的MATLAB脚本,展示了如何初始化并运行上述设置的Simulink模型。
MATLAB脚本 (main_script.m
)
function acc_mpc_simulation()
% 初始化Simulink模型
model = 'ACC_MPC_CarSim';
open_system(model);
% 设置仿真参数
set_param(model, 'StopTime', '100');
set_param(model, 'Solver', 'ode45');
% 运行仿真
sim(model);
% 获取并绘制结果
load_system(model);
plot_results();
end
function plot_results()
% 获取仿真数据
simout = sim('ACC_MPC_CarSim');
ego_speed = simout.EgoSpeed.Data;
target_speed = simout.TargetSpeed.Data;
time = simout.Time.Data;
% 绘制速度随时间变化图
figure;
plot(time, ego_speed, '-b', time, target_speed, '--r');
xlabel('Time (s)');
ylabel('Speed (m/s)');
legend('Ego Vehicle Speed', 'Target Speed');
title('Vehicle Speed Tracking with ACC and MPC');
end
Simulink 模型 (ACC_MPC_CarSim.slx
)
-
驾驶员模块
- 使用PI控制器模拟驾驶员行为。
-
MPC 控制器模块
- 计算加速度命令。
-
CarSim 模块
- 模拟车辆动力学。
-
传感器模块
- 提供速度和距离信息。
-
执行器模块
- 执行加速度命令。
4. 示例代码详细说明
驾驶员模块 (Driver.mdl
)
% PI Controller for Driver Model
Kp = 1; % Proportional Gain
Ki = 0.1; % Integral Gain
set_point = 30; % Desired Speed in km/h
function [acceleration] = driver_model(current_speed, set_point)
global Kp Ki integral;
error = set_point - current_speed;
integral = integral + error * Ts; % Ts is the sampling time
acceleration = Kp * error + Ki * integral;
end
MPC 控制器模块 (MPC_Controller.mdl
)
% MPC Controller for ACC
function [u] = mpc_controller(x, ref)
% Initialize MPC object
mpcobj = mpc(sysd, Ts);
% Set reference and initial state
mpcobj.Model.Nominal.Y = ref;
mpcobj.Model.Nominal.X = x;
% Compute control action
u = mpcmove(mpcobj, x, ref);
end
CarSim 模块 (CarSim.mdl
)
% CarSim Module
function [speed, distance] = carsim_module(u)
% Simulate vehicle dynamics using CarSim
% u: Acceleration command
% speed: Current speed
% distance: Distance to lead vehicle
% Example: Simple integration of acceleration
speed = speed + u * Ts;
distance = distance + speed * Ts;
end
5. 整合与运行
将上述各模块整合到一个完整的Simulink模型中,并通过MATLAB脚本运行仿真。这将帮助您验证模型的正确性和性能。
希望这些示例代码和说明对您有所帮助!
为了实现自适应巡航控制(ACC)的模型预测控制(MPC),并与CarSim进行联合仿真,我们需要在MATLAB中设计MPC控制器,并将其与CarSim车辆模型集成。以下是一个详细的示例代码框架,包括如何设置MPC控制器以及如何将它与CarSim集成。
1. MATLAB中的MPC控制器设计
首先,在MATLAB中设计一个用于ACC的MPC控制器。这里假设我们关注的是纵向控制,即保持与前车的安全距离和速度跟踪。
定义车辆动力学模型
% 线性化车辆纵向动力学模型
m = 1500; % 车辆质量 (kg)
A = [0 1; 0 -1/(m*0.05)]; % 假设简单的线性模型
B = [0; 1/m];
C = [1 0]; % 输出为速度
D = 0;
% 创建连续时间状态空间模型
sys = ss(A, B, C, D);
% 将系统离散化
Ts = 0.1; % 采样时间 (s)
sysd = c2d(sys, Ts);
设计MPC控制器
% 设置MPC参数
mpcobj = mpc(sysd, Ts);
% 设置权重
mpcobj.Weights.ManipulatedVariablesRate = 0.1;
mpcobj.Weights.OutputVariables = 1;
% 设置约束
mpcobj.MV.Min = -300; % 最小加速度 (N)
mpcobj.MV.Max = 300; % 最大加速度 (N)
% 设置预测和控制范围
mpcobj.PredictionHorizon = 10;
mpcobj.ControlHorizon = 2;
2. 与CarSim集成
接下来,我们需要在Simulink环境中创建一个模型,该模型包含MPC控制器和CarSim车辆模型。确保你已经安装了CarSim和Simulink接口。
Simulink模型搭建
- 添加MPC控制器块:从Simulink库浏览器中拖放“MPC Controller”块到你的模型中。
- 配置MPC控制器块:双击MPC Controller块,选择之前定义的
mpcobj
。 - 添加CarSim模块:使用CarSim提供的接口,将CarSim车辆模型导入Simulink。
- 连接信号:确保正确地连接了MPC控制器的输出(加速度命令)到CarSim车辆模型的输入(加速/减速命令)。同时,将CarSim车辆的速度和相对距离信息反馈给MPC控制器作为其输入。
3. 示例代码片段
以下是一个简化版的MATLAB脚本,展示了如何初始化并运行上述设置的Simulink模型。
MATLAB脚本 (main_script.m
)
function acc_mpc_simulation()
% 初始化Simulink模型
model = 'ACC_MPC_CarSim';
open_system(model);
% 设置仿真参数
set_param(model, 'StopTime', '100');
set_param(model, 'Solver', 'ode45');
% 运行仿真
sim(model);
% 获取并绘制结果
load_system(model);
plot_results();
end
function plot_results()
% 获取仿真数据
simout = sim('ACC_MPC_CarSim');
ego_speed = simout.EgoSpeed.Data;
target_speed = simout.TargetSpeed.Data;
time = simout.Time.Data;
% 绘制速度随时间变化图
figure;
plot(time, ego_speed, '-b', time, target_speed, '--r');
xlabel('Time (s)');
ylabel('Speed (m/s)');
legend('Ego Vehicle Speed', 'Target Speed');
title('Vehicle Speed Tracking with ACC and MPC');
end
Simulink 模型 (ACC_MPC_CarSim.slx
)
-
驾驶员模块
- 使用PI控制器模拟驾驶员行为。
-
MPC 控制器模块
- 计算加速度命令。
-
CarSim 模块
- 模拟车辆动力学。
-
传感器模块
- 提供速度和距离信息。
-
执行器模块
- 执行加速度命令。
4. 示例代码详细说明
驾驶员模块 (Driver.mdl
)
% PI Controller for Driver Model
Kp = 1; % Proportional Gain
Ki = 0.1; % Integral Gain
set_point = 30; % Desired Speed in km/h
function [acceleration] = driver_model(current_speed, set_point)
global Kp Ki integral;
error = set_point - current_speed;
integral = integral + error * Ts; % Ts is the sampling time
acceleration = Kp * error + Ki * integral;
end
MPC 控制器模块 (MPC_Controller.mdl
)
% MPC Controller for ACC
function [u] = mpc_controller(x, ref)
% Initialize MPC object
mpcobj = mpc(sysd, Ts);
% Set reference and initial state
mpcobj.Model.Nominal.Y = ref;
mpcobj.Model.Nominal.X = x;
% Compute control action
u = mpcmove(mpcobj, x, ref);
end
CarSim 模块 (CarSim.mdl
)
% CarSim Module
function [speed, distance] = carsim_module(u)
% Simulate vehicle dynamics using CarSim
% u: Acceleration command
% speed: Current speed
% distance: Distance to lead vehicle
% Example: Simple integration of acceleration
speed = speed + u * Ts;
distance = distance + speed * Ts;
end
5. 整合与运行
将上述各模块整合到一个完整的Simulink模型中,并通过MATLAB脚本运行仿真。这将帮助您验证模型的正确性和性能。
希望这些示例代码和说明对您有所帮助!