自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(395)
  • 收藏
  • 关注

原创 多植物叶片病虫害识别-基于Matlab检测系统GUI

简介:基于Matlab的多植物叶片病虫害识别检测系统是一款专为农业植保领域开发的智能识别工具。通过深度学习技术,该系统采用VGG19模型对植物叶片图像进行训练,能够精确识别包括番茄、苹果等在内的多种植物叶片,并对植物病害进行详细分类。系统支持38种不同的病害类型识别,并提供病害简介、症状描述及整治措施。它还集成了丰富的图像预处理功能,如图像增强、滤波、灰度处理和图像分割,以确保病害识别的准确性与有效性。

2025-04-12 10:45:17 722

原创 如何使用carsim与Simulink联合仿真的车辆换道轨迹规划与轨迹跟踪模型实现换道超车,包含换道决策,路径规划和轨迹跟踪,有直道和弯道超车两种。

基于carsim与Simulink联合仿真的车辆换道轨迹规划与轨迹跟踪模型具体内容包括:cpar文件和simulink文件,并有联合仿真步骤的演示操作视频carsim+simulink联合仿真实实现换道超车,包含换道决策,路径规划和轨迹跟踪,有直道和弯道超车两种。包含路径规划算法+mpc轨迹跟踪算法可以适用于弯道道路,弯道车道保持,弯道变道86carsim内规划轨迹可视化,道路环境可以自定义,资料包里面有视频教学和算法讲解。

2025-04-08 07:15:00 612

原创 基于PSO粒子群算法和GA遗传算法的PID 控制器优化设计 程序基于MATLAB代码编写 (1)

基于PSO粒子群算法和GA遗传算法的PID 控制器优化设计基于PSO粒子群算法和GA遗传算法的PID 控制器优化设计程序基于MATLAB代码编写分别包含PSO-PID和GA-PID两个PID 控制器的性能取决于 Kp、 Ki、 Kd 这 3 个参数是否合理,因此,优化 PID 控制器参数具有重要意义。目前, PID 控制器参数主要是人工调整,这种方法不仅费时,而且不能保证获得最佳的性能。PSO和GA已经广泛应用于函数优化、神经网络训练、模式分类、模糊系统控制以及其它应用领域。

2025-04-07 11:00:17 410

原创 基于Matlab程序音频水印系统,能抵抗TSM 和 PSM攻击

基于Matlab程序音频水印系统,能抵抗TSM 和 PSM攻击,能抵抗常规信号处理之外,还抵抗TSM和 PSM 攻击能够体现平均SNR和平均 ODG可以直接导出加水印后的,攻击后的,提取水印后的音频文件以及所提取的音频水印文件,并画出频谱图,通过计算所有操作攻击的平均·Corr(MCorr)和平均·BER(MBER)作为整体鲁棒性的指标TSM·攻击是在音频信号音调保持不变的情况下,进行加减速操作,音频信.号的时长会发生变化。PSM·攻击是在音频信号的时长保持不变的情况下,进行·音频升高或降低操作,音频

2025-04-05 07:45:00 1010

原创 基于领航者人工势场法的队形变化避障控制matlab代码仿真,路径规划,改进人工势场法,拓扑结构,集群,变换队形,基于领航者与人工势场法相结合的编队控制算法,可随意变换队形 增加机器人个数。

基于领航者人工势场法的队形变化避障控制matlab代码仿真,路径规划,改进人工势场法,拓扑结构,集群,变换队形,基于领航者与人工势场法相结合的编队控制算法,可随意变换队形 增加机器人个数。

2025-03-26 07:30:00 429

原创 无人机集群避障、多智能体协同控制、路径规划的matlab代码

无人机集群避障、多智能体协同控制、路径规划的matlab代码一共三个代码:① 四旋翼编队控制:包括目标分配、全局和局部路径规划② 无多人机模拟复杂机制和动态行为③ 单机模拟,路径跟随、规划;无人机群仿真控制。

2025-03-26 06:00:00 298

原创 基于yolo训练打架识别检测数据集

基于yolo训练打架识别检测数据集打架识别检测yolo,经yolov8训练。拥有完整数据集(已分好训练和验证集,共9000张)

2025-05-21 08:00:00 511

原创 YOLO混凝土缺陷检测数据集

YOLO混凝土缺陷检测 数据集 模型 界面1.图片数量7353,模型已训练200轮;2.类别:exposed reinforcement,rust stain,Crack,Spalling,Efflorescence,delamination(外露钢筋,生锈,裂缝,剥落,风化,分层);3.用于yolov5 yolov6 yolov7 yolov8 yolov9 yolov10,Python,目标检测,机器学习,人工智能,深度学习,混凝土缺陷检测,混凝土缺陷识别,建筑缺陷识别以下文字和示例代码,仅供

2025-05-21 07:45:00 409

原创 基于python/Apriori的电影推荐系统

基于python/Apriori的电影推荐系统包含内容:数据集➕ppt➕文档➕代码

2025-05-21 06:30:00 269

原创 电动车头盔检测YOLO数据集

电动车头盔检测YOLO数据集模型2298张 3类【电动车头盔检测YOLO数据集】共【2298】张,按照8比2划分为训练集和验证集,其中训练集【1838】张,验证集【460】张,模型分为【3】类,分类为:【‘rider’, ‘head’, ‘helmet’】每个类别的图片数量和标注框数量如下:rider: 图片数【2278】,标注框数【3013】head: 图片数【1009】,标注框数【1523】helmet: 图片数【1489】,标注框数【1734】数据集训练结果图片见下图,有xml、tx

2025-05-21 06:30:00 508

原创 基于yolo UA-DETRAC车辆检测识别

基于yolo UA-DETRAC车辆检测识别经yolov8训练。有完整数据集(已分好训练和验证集)。

2025-05-21 06:00:00 488

原创 基于yolov8/opencv道路表面缺陷检测系统

基于yolov8/opencv道路表面缺陷检测系统

2025-05-20 09:32:33 547

原创 基于YOLOv8+pyqt5的农作物识别检测系统

基于YOLOv8+pyqt5的农作物识别检测系统内含CWC数据集包含蓝草、藜、刺菜、玉米、莎草、棉花、茄属植物、番茄、天鹅绒、生菜、萝卜,11类农作物也可自行替换模型,使用该界面做其他,实现检测目标自定义完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档

2025-05-20 09:21:13 455

原创 基于机器学习和目标检测算法YOLOv8火焰、烟雾数据集

【火焰、烟雾数据集】适用YOLOv8-YOLOv10、YOLO11、YOLO12专为机器学习和目标检测算法而设计共有21527张图片,只含fire的图片1164张,只含smoke的图片5867张包含fire和smoke的图片4658张fire标签14692个,smoke标签11865个所有图像均根据YOLO格式(0和1之间的归一化坐标)进行标注包括jpg图像数据集和归一化后的txt标注数据集

2025-05-20 09:17:13 331

原创 变压器差动保护MATLAB/simulink仿真

变压器差动保护MATLAB/simulink仿真变压器差动保护仿真➕报告

2025-05-20 09:08:34 254

原创 基于matlab粒子群(pso)优化的bp神经网络PID控制

基于matlab粒子群(pso)优化的bp神经网络PID控制传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学习能力在线实时调整PID控制参数,提升系统

2025-05-19 09:50:28 197

原创 基于matlab改进遗传算法的电力系统无功优化研究

基于matlab改进遗传算法的电力系统无功优化研究该程序主要方法复现《基于改进遗传算法的电力系统无功优化研究》,建立了以有功损耗最小为目标的无功优化数学模型,同时将负荷节点电压越界和发电机无功出力越界的情况以惩罚项的形式加入目标函数中,并采用matpower进行系统潮流计算。考虑到遗传算法在解决无功优化问题时存在易收敛于局部最优解和收敛速度慢等问题,本文对其作了改进:对控制变量采用了整实数混合编码方式;采用了轮盘赌和精英保留策略的混合选择方式;在对参数交叉及变异概率进行动态调节时,同时考虑了个体适应

2025-05-19 09:43:38 326

原创 基于机器学习&深度学习CNN(卷积神经网络)

基于机器学习&深度学习CNN(卷积神经网络) 代码+报告+数据【资料内容】1 常用深度网络模型介绍2 原理介绍【CNN(卷积神经网络)和LSTM(长短期记忆网络)】3 具体案例及代码分析3.1 天气识别3.2 股票预测4 结果展示5 出现的问题和解决办法6 参考文献

2025-05-19 09:34:15 169

原创 基于YOLOv8➕pyqt5的黄瓜植株害虫检测系统

基于YOLOv8➕pyqt5的黄瓜植株害虫检测系统内含4286张黄瓜植株害虫数据集包括[‘蚜虫’, ‘果蝇’, ‘南瓜甲虫’, ‘潜叶蝇’, ‘粉虱’],5类

2025-05-18 07:30:00 485

原创 基于YOLOv8深度学习焊缝质量检测系统

基于YOLOv8深度学习焊缝质量检测系统内含1300张焊缝缺陷数据集包括[‘Bad Welding’, ‘Crack’, ‘Excess Reinforcement’, ‘Good Welding’, ‘Porosity’, ‘Spatters’],6类

2025-05-18 06:15:00 470

原创 基于YOLOv8深度学习的火焰烟雾检测系统

基于YOLOv8深度学习的火焰烟雾检测系统基于深度学习YOLOv8+Pyqt5的火焰烟雾检测识别系统(完整源码源文件+已标注的数据集+训练好的模型)Python + PyQt5可视化界面可对图片,视频,摄像头进行识别

2025-05-18 06:15:00 307

原创 基于YOLOv8➕pyqt5的轨道缺陷检测系统

基于YOLOv8➕pyqt5的轨道缺陷检测系统内含1593张轨道缺陷数据集包括[‘Crack’, ‘Putus’, ‘Spalling’, ‘Squat’],4类

2025-05-18 06:00:00 545

原创 基于YOLOv8深度学习西红柿成熟度检测系统

基于YOLOv8深度学习西红柿成熟度检测系统完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档可以替换自己训练的模型,实现检测目标自定义

2025-05-17 08:00:00 467

原创 基于YOLOv8深度学习水下垃圾检测系统

基于YOLOv8深度学习水下垃圾检测系统内含7000张水下垃圾数据集包含bio(生物),metal(金属),plastic(塑料),3类也可自行替换模型,使用该界面做其他检测

2025-05-17 07:15:00 494

原创 如何使用MATLAB实现四旋翼飞行器的鲁棒状态反馈HOO控制

如何使用MATLAB实现四旋翼飞行器的鲁棒状态反馈HOO控制简介:H∞控制是一种在 20 世纪 70 年代出现的鲁棒控制算法。它抑制干扰的最大频率响应,以确保系统的鲁棒性。这里提供了一个使用 H∞控制稳定四旋翼的代码。该代码是一个MATLAB仿真脚本,用于模拟四旋翼无人机在H-infinity控制下的飞行轨迹跟踪。代码包括无人机动力学建模、H-infinity控制器设计、路径规划、状态反馈控制以及结果可视化,展示了从初始化到动画显示和多图绘制的完整过程。

2025-05-17 07:00:00 466

原创 基于MATLAB程序实现四旋翼控制 PD_反步控制_滑模控制三种四旋翼无人机轨迹跟踪控制算法仿真

基于MATLAB程序实现四旋翼控制 PD_反步控制_滑模控制三种四旋翼无人机轨迹跟踪控制算法仿真包含:四旋翼的三种不同控制方法的实现:MATLAB 中的 PD 控制、滑模控制和反步控制。PD 控制:一种经典的控制方法,仅使用比例和导数项来生成控制信号。滑模控制:一种强大的控制技术,旨在使系统保持在滑动表面上。Backstepping Control(反步控制):一种利用“逆投影”方法分阶段设计控制律的控制技术。

2025-05-17 05:15:00 304

原创 如何使用python实现租房房价分析与预测项目

如何使用python实现租房房价分析与预测项目关键内容:数据可视化➕LGBM模型➕神经网络包含内容:数据集➕ppt➕文档➕代码

2025-05-16 08:15:00 711

原创 基于python人工智能的股票市场自动分析系统

数据挖掘项目–基于python人工智能的股票市场自动分析系统关键技术:GRU模型➕XGBoost算法包含内容:数据集➕代码➕文档➕ppt

2025-05-16 06:00:00 786

原创 如何使用matlab和CCS程序实现FIR滤波器的设计仿真

如何使用matlab和CCS程序实现FIR滤波器的设计仿真基于ccs和Matlab的FIR滤波器设计与实现dsp fir滤波器设计报告+matlab代码+ccs代码

2025-05-16 05:30:00 432

原创 基于YOLOv8的行人车辆识别系统,附代码

基于YOLOv8的行人车辆识别系统,附代码具体介绍:软件:Pycharm+Anaconda环境:python=3.9 opencv PyQt5 torch1.9文件:环境、UI、模型训练文件,环境配置文档,测试图片视频,训练、测试及界面代码。功能:基于深度学习的行人车辆检测计数系统,pyqt界面。能检测图像、视频并保存结果,展示目标位置、置信度等信息。可检测目标数目,支持摄像头实时检测、展示、记录与保存,能切换目标查看位置,提供数据集和训练代码用于重新训练。

2025-05-15 09:00:00 386

原创 基于YOLOv8+pyqt5的课堂行为检测系统

基于YOLOv8+pyqt5的课堂行为检测系统可以替换训练的模型,实现检测目标自定义完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档Python + PyQt5可视化界面可对图片,视频,摄像头进行识别

2025-05-15 08:00:00 475

原创 基于YOLOv8深度学习的驾驶员行为检测系统

基于YOLOv8深度学习的驾驶员行为检测系统基于深度学习YOLOv8+Pyqt5的驾驶员行为检测识别系统(完整源码源文件+已标注的数据集+训练好的模型)识别分类:“睁眼”,“闭眼”,“香烟”,“电话”,“安全带”Python + PyQt5可视化界面可对图片,视频,摄像头进行识别

2025-05-15 07:00:00 251

原创 基于YOLOv8深度学习的害虫检测系统

基于YOLOv8深度学习的害虫检测系统内含3899张害虫数据集包括[‘粘虫’, ‘小地老虎’, ‘蛴螬’, ‘蝼蛄’, ‘桃蛀螟’, ‘红蜘蛛’],6类也可自行替换模型,使用该界面做其他检测

2025-05-15 06:45:00 641

原创 基于YOLOv8目标检测的水稻病害检测系统

基于YOLOv8目标检测的水稻病害检测系统内含6715张水稻病害数据集,共3类标签names:[‘Bacteria Leaf Blight’,‘Brown Spot’, ‘Leaf smut’]名称:【‘细菌叶斑病’, ‘褐斑病’, ‘叶瘤病’】也可自行替换模型,使用该界面做其他检测

2025-05-15 05:15:00 987

原创 基于深度学习YOLOv8➕pyqt5的西红柿成熟度检测系统

基于深度学习YOLOv8➕pyqt5的西红柿成熟度检测系统包含:完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档

2025-05-14 09:00:00 374

原创 基于YOLOv8的行人车辆识别系统

基于YOLOv8的行人车辆识别系统文件:环境、UI、模型训练文件,环境配置文档,测试图片视频,训练、测试及界面代码。功能:基于深度学习的行人车辆检测计数系统,pyqt界面。能检测图像、视频并保存结果,展示目标位置、置信度等信息。可检测目标数目,支持摄像头实时检测、展示、记录与保存,能切换目标查看位置,提供数据集和训练代码用于重新训练。

2025-05-14 08:15:00 581

原创 基于python实现深度学习的人脸识别含报告

本项目使用深度学习技术实现了一个简单的人脸识别系统。OpenCV:用于图像处理和人脸检测face_recognition库:用于人脸特征提取和识别深度学习中的卷积神经网络(CNN):用于人脸特征编码人脸检测和定位人脸特征编码人脸匹配和识别。

2025-05-14 06:30:00 1830

原创 基于python的大学毕业生就业分析预测 含报告

本项目旨在利用Python进行数据分析和机器学习,对大学毕业生的就业情况进行分析并预测。通过收集相关数据集(如学历、专业、成绩、实习经历等),使用统计分析方法理解影响就业的关键因素,并构建预测模型来预测毕业生的就业情况。

2025-05-14 06:00:00 665

原创 基于Python机器学习预测客户的购买品牌行为预测模型。

基于Python机器学习预测客户的购买品牌行为预测模型。这个项目包括数据预处理、特征构建、模型建立、结果分析和模型评估等步骤。具体到模型的选择和构建,使用逻辑回归(Logistic Regression)作为主要的预测模型。在本项目中,逻辑回归用于根据客户的历史购买数和其他相关特征,预测他们倾向于购买哪个品牌的产品。还用到了其它模型的评估方法,使用混淆矩阵(Confusion Matrix)和ROC曲线来评估模型性能,确保模型具有良好的分类效果和泛化能力。此外,还讨论了特征的重要性和模型调整的策略,以

2025-05-13 12:00:00 776

原创 基于Python代码机器学习心脏病风险预测模型构建与分析

基于Python代码机器学习心脏病风险预测模型构建与分析数据➕代码➕报告报告深入探讨了利用机器学习技术对心脏病数据进行分析和预测的方法,旨在为心脏病的预防、诊断及治疗提供科学依据。通过采用逻辑回归、贝叶斯分类器和随机森林三种不同的机器学习模型,我们对心脏病的发生进行了预测建模,并通过多种评估指标对比各模型的表现。实验结果显示,所建立的模型能够有效地识别出心脏病的风险因素,并实现了较高的预测准确性,其中最优模型的准确率达到了0.9以上。

2025-05-13 10:00:00 621

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除