基于Matlab函数混合遗传-粒子群自适应优化算法,将遗传算法的交叉和变异引入粒子群算法,同时粒子群算法改进方法:混沌初始化粒子群,非线性调整惯性权重,学习因子非线性变换。

混合遗传-粒子群自适应优化算法用于函数寻优Matlab
源码+详细注释(方便学习)以及千字理论学习资料
将遗传算法的交叉和变异引入粒子群算法,同时粒子群算法改进方法:混沌初始化粒子群,非线性调整惯性权重,学习因子非线性变换

在这里插入图片描述


为了将遗传算法(GA)的交叉和变异操作引入粒子群优化算法(PSO),同时改进PSO方法,包括混沌初始化、非线性调整惯性权重以及学习因子的非线性变换,需要对标准的PSO算法进行相应的修改。下面是一个基于这些要求的MATLAB代码示例。

1. 混沌初始化

使用Logistic映射来生成初始粒子的位置和速度。

2. 非线性调整惯性权重

采用一个非线性的惯性权重更新策略,比如随着迭代次数增加而减少。

3. 学习因子非线性变换

根据迭代过程动态调整认知和社会学习因子。

4. 引入遗传算法的交叉和变异

在每一代中,通过交叉和变异操作来探索解空间。

以下是结合上述特性的MATLAB代码示例:

function [gbest, gbest_fitness] = hybrid_PSO_GA(func, lb, ub, population_size, max_iter)
    % func: 目标函数
    % lb, ub: 变量的下界和上界
    % population_size: 粒子数量
    % max_iter: 最大迭代次数
    
    dim = length(lb); % 维度
    w_max = 0.9; w_min = 0.4; % 惯性权重范围
    c1 = 2.5; c2 = 2.5; % 初始学习因子
    r1 = rand(); r2 = rand(); % 随机数
    
    % 混沌初始化
    position = zeros(population_size, dim);
    for i = 1:population_size
        x = 0.5;
        for j = 1:dim
            x = 4*x*(1-x); % Logistic映射
            position(i,j) = lb(j) + (ub(j)-lb(j))*x;
        end
    end
    velocity = rand(population_size, dim); % 随机初始化速度
    
    pbest_position = position; % 初始化个体最佳位置
    pbest_fitness = arrayfun(@(i) func(position(i,:)), 1:population_size); % 计算适应值
    [~, index] = min(pbest_fitness);
    gbest = pbest_position(index,:); % 全局最佳位置
    gbest_fitness = pbest_fitness(index); % 全局最佳适应值
    
    for iter = 1:max_iter
        % 非线性调整惯性权重
        w = w_max - (w_max-w_min)*iter/max_iter;
        
        % 动态调整学习因子
        c1 = 2.5 - 2*iter/max_iter;
        c2 = 0.5 + 2*iter/max_iter;
        
        for i = 1:population_size
            % 更新速度和位置
            velocity(i,:) = w*velocity(i,:) ...
                + c1*r1.*(pbest_position(i,:) - position(i,:)) ...
                + c2*r2.*(gbest - position(i,:));
            position(i,:) = position(i,:) + velocity(i,:);
            
            % 边界处理
            position(i,:) = max(min(position(i,:), ub), lb);
            
            % 更新个体最佳
            fitness = func(position(i,:));
            if fitness < pbest_fitness(i)
                pbest_fitness(i) = fitness;
                pbest_position(i,:) = position(i,:);
                
                % 更新全局最佳
                if fitness < gbest_fitness
                    gbest_fitness = fitness;
                    gbest = position(i,:);
                end
            end
        end
        
        % 遗传算法的交叉和变异
        for i = 1:2:population_size-1
            if rand() < 0.7 % 交叉概率
                alpha = rand();
                temp = alpha * position(i,:) + (1-alpha) * position(i+1,:);
                position(i+1,:) = alpha * position(i+1,:) + (1-alpha) * position(i,:);
                position(i,:) = temp;
            end
            
            if rand() < 0.1 % 变异概率
                idx = randi(dim);
                position(i,idx) = lb(idx) + (ub(idx)-lb(idx))*rand();
            end
        end
    end
end

示例用法

假设我们要最小化Rastrigin函数:

function y = rastrigin(x)
    A = 10;
    y = A * length(x) + sum(x.^2 - A * cos(2 * pi * x));
end

% 调用hybrid_PSO_GA
[gbest, gbest_fitness] = hybrid_PSO_GA(@rastrigin, [-5.12 -5.12], [5.12 5.12], 30, 1000);
disp(['最优解:', num2str(gbest)]);
disp(['最优解对应的函数值:', num2str(gbest_fitness)]);

这段代码提供了一个基本框架,你可以根据具体需求进一步调整参数和逻辑。希望这能帮助你实现你的目标!
在这里插入图片描述
为了将遗传算法(GA)的交叉和变异操作引入粒子群优化算法(PSO),同时改进PSO方法,包括混沌初始化、非线性调整惯性权重以及学习因子的非线性变换,我们可以编写一个MATLAB代码示例。以下是一个结合这些特性的完整代码示例:

1. 混沌初始化

使用Logistic映射来生成初始粒子的位置和速度。

2. 非线性调整惯性权重

采用一个非线性的惯性权重更新策略,比如随着迭代次数增加而减少。

3. 学习因子非线性变换

根据迭代过程动态调整认知和社会学习因子。

4. 引入遗传算法的交叉和变异

在每一代中,通过交叉和变异操作来探索解空间。

MATLAB代码示例

function [gbest, gbest_fitness] = hybrid_PSO_GA(func, lb, ub, population_size, max_iter)
    % func: 目标函数
    % lb, ub: 变量的下界和上界
    % population_size: 粒子数量
    % max_iter: 最大迭代次数
    
    dim = length(lb); % 维度
    w_max = 0.9; w_min = 0.4; % 惯性权重范围
    c1 = 2.5; c2 = 2.5; % 初始学习因子
    r1 = rand(); r2 = rand(); % 随机数
    
    % 混沌初始化
    position = zeros(population_size, dim);
    for i = 1:population_size
        x = 0.5;
        for j = 1:dim
            x = 4*x*(1-x); % Logistic映射
            position(i,j) = lb(j) + (ub(j)-lb(j))*x;
        end
    end
    velocity = rand(population_size, dim); % 随机初始化速度
    
    pbest_position = position; % 初始化个体最佳位置
    pbest_fitness = arrayfun(@(i) func(position(i,:)), 1:population_size); % 计算适应值
    [~, index] = min(pbest_fitness);
    gbest = pbest_position(index,:); % 全局最佳位置
    gbest_fitness = pbest_fitness(index); % 全局最佳适应值
    
    for iter = 1:max_iter
        % 非线性调整惯性权重
        w = w_max - (w_max-w_min)*iter/max_iter;
        
        % 动态调整学习因子
        c1 = 2.5 - 2*iter/max_iter;
        c2 = 0.5 + 2*iter/max_iter;
        
        for i = 1:population_size
            % 更新速度和位置
            velocity(i,:) = w*velocity(i,:) ...
                + c1*r1.*(pbest_position(i,:) - position(i,:)) ...
                + c2*r2.*(gbest - position(i,:));
            position(i,:) = position(i,:) + velocity(i,:);
            
            % 边界处理
            position(i,:) = max(min(position(i,:), ub), lb);
            
            % 更新个体最佳
            fitness = func(position(i,:));
            if fitness < pbest_fitness(i)
                pbest_fitness(i) = fitness;
                pbest_position(i,:) = position(i,:);
                
                % 更新全局最佳
                if fitness < gbest_fitness
                    gbest_fitness = fitness;
                    gbest = position(i,:);
                end
            end
        end
        
        % 遗传算法的交叉和变异
        for i = 1:2:population_size-1
            if rand() < 0.7 % 交叉概率
                alpha = rand();
                temp = alpha * position(i,:) + (1-alpha) * position(i+1,:);
                position(i+1,:) = alpha * position(i+1,:) + (1-alpha) * position(i,:);
                position(i,:) = temp;
            end
            
            if rand() < 0.1 % 变异概率
                idx = randi(dim);
                position(i,idx) = lb(idx) + (ub(idx)-lb(idx))*rand();
            end
        end
    end
end

示例用法

假设我们要最小化Rosenbrock函数:

function y = rosenbrock(x)
    A = 100;
    B = 1;
    y = A * (x(2) - x(1)^2)^2 + (B - x(1))^2;
end

% 调用hybrid_PSO_GA
[gbest, gbest_fitness] = hybrid_PSO_GA(@rosenbrock, [-5 -5], [5 5], 30, 1000);
disp(['最优解:', num2str(gbest)]);
disp(['最优解对应的函数值:', num2str(gbest_fitness)]);

这段代码提供了一个基本框架,你可以根据具体需求进一步调整参数和逻辑。希望这能帮助你实现你的目标。

在这里插入图片描述
为了实现将遗传算法(GA)的交叉和变异操作引入粒子群优化算法(PSO),同时改进PSO方法,包括混沌初始化、非线性调整惯性权重以及学习因子的非线性变换,我们可以编写一个完整的MATLAB代码示例。以下是一个结合这些特性的完整代码示例,并且包含了一个用于绘制进化曲线的函数。

MATLAB代码示例

function [gbest, gbest_fitness] = hybrid_PSO_GA(func, lb, ub, population_size, max_iter)
    % func: 目标函数
    % lb, ub: 变量的下界和上界
    % population_size: 粒子数量
    % max_iter: 最大迭代次数
    
    dim = length(lb); % 维度
    w_max = 0.9; w_min = 0.4; % 惯性权重范围
    c1 = 2.5; c2 = 2.5; % 初始学习因子
    r1 = rand(); r2 = rand(); % 随机数
    
    % 混沌初始化
    position = zeros(population_size, dim);
    for i = 1:population_size
        x = 0.5;
        for j = 1:dim
            x = 4*x*(1-x); % Logistic映射
            position(i,j) = lb(j) + (ub(j)-lb(j))*x;
        end
    end
    velocity = rand(population_size, dim); % 随机初始化速度
    
    pbest_position = position; % 初始化个体最佳位置
    pbest_fitness = arrayfun(@(i) func(position(i,:)), 1:population_size); % 计算适应值
    [~, index] = min(pbest_fitness);
    gbest = pbest_position(index,:); % 全局最佳位置
    gbest_fitness = pbest_fitness(index); % 全局最佳适应值
    
    fitness_history = zeros(max_iter, 1);
    
    for iter = 1:max_iter
        % 非线性调整惯性权重
        w = w_max - (w_max-w_min)*iter/max_iter;
        
        % 动态调整学习因子
        c1 = 2.5 - 2*iter/max_iter;
        c2 = 0.5 + 2*iter/max_iter;
        
        for i = 1:population_size
            % 更新速度和位置
            velocity(i,:) = w*velocity(i,:) ...
                + c1*r1.*(pbest_position(i,:) - position(i,:)) ...
                + c2*r2.*(gbest - position(i,:));
            position(i,:) = position(i,:) + velocity(i,:);
            
            % 边界处理
            position(i,:) = max(min(position(i,:), ub), lb);
            
            % 更新个体最佳
            fitness = func(position(i,:));
            if fitness < pbest_fitness(i)
                pbest_fitness(i) = fitness;
                pbest_position(i,:) = position(i,:);
                
                % 更新全局最佳
                if fitness < gbest_fitness
                    gbest_fitness = fitness;
                    gbest = position(i,:);
                end
            end
        end
        
        % 遗传算法的交叉和变异
        for i = 1:2:population_size-1
            if rand() < 0.7 % 交叉概率
                alpha = rand();
                temp = alpha * position(i,:) + (1-alpha) * position(i+1,:);
                position(i+1,:) = alpha * position(i+1,:) + (1-alpha) * position(i,:);
                position(i,:) = temp;
            end
            
            if rand() < 0.1 % 变异概率
                idx = randi(dim);
                position(i,idx) = lb(idx) + (ub(idx)-lb(idx))*rand();
            end
        end
        
        fitness_history(iter) = gbest_fitness;
    end
    
    plot(fitness_history);
    title('Griewank 进化曲线对比');
    xlabel('进化代数');
    ylabel('全局最佳适应度');
end

% 示例用法
function y = griewank(x)
    dim = length(x);
    y = 1 + sum(x.^2 / 4000) - prod(cos(x ./ sqrt(1:dim)));
end

% 调用hybrid_PSO_GA
[gbest, gbest_fitness] = hybrid_PSO_GA(@griewank, -600*ones(1,10), 600*ones(1,10), 30, 1000);
disp(['最优解:', num2str(gbest)]);
disp(['最优解对应的函数值:', num2str(gbest_fitness)]);

解释

  1. 混沌初始化:使用Logistic映射生成初始粒子的位置。
  2. 非线性调整惯性权重:随着迭代次数增加而减少惯性权重。
  3. 学习因子非线性变换:动态调整认知和社会学习因子。
  4. 遗传算法的交叉和变异:在每一代中通过交叉和变异操作来探索解空间。
  5. 绘图:记录并绘制每一代的全局最佳适应度。

示例用法

这段代码提供了一个基本框架,你可以根据具体需求进一步调整参数和逻辑。希望这能帮助你实现你的目标!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值