如何使用python和Vrep为ur5机器人进行路径规划,搭建方格场景,给定连续三维轨迹坐标点,机械臂末端沿着给定轨迹运行,模拟仓库货物搬运的简单场景。

如何使用python和Vrep为ur5机器人进行路径规划,搭建方格场景,给定连续三维轨迹坐标点,机械臂末端沿着给定轨迹运行,模拟仓库货物搬运的简单场景。

在这里插入图片描述


为了使用Python和V-REP(现在称为CoppeliaSim)为UR5机器人进行路径规划,并搭建一个方格场景模拟仓库货物搬运,我们需要遵循以下步骤:

准备工作

  1. 安装CoppeliaSim:确保你已经下载并安装了最新版本的CoppeliaSim。
  2. 获取UR5模型:在CoppeliaSim中加载或导入UR5机器人模型。通常,CoppeliaSim自带一些常见的机器人模型,包括UR5。
  3. 安装远程API库:CoppeliaSim提供了远程API,允许外部程序与之交互。你需要将CoppeliaSim的remoteApi文件夹添加到你的Python项目中。

步骤概述

  1. 设置环境:在CoppeliaSim中搭建仓库场景,包括地面、障碍物和目标点。
  2. 编写Python脚本:通过CoppeliaSim的远程API控制UR5机器人执行给定的轨迹。
  3. 路径规划:可以使用Python中的路径规划算法(如RRT, A*等)计算从起始位置到目标位置的路径。这里假设我们已经有了连续三维轨迹坐标点。
  4. 运动学求解:利用逆向运动学(IK)解决末端执行器的位置和姿态问题。

示例代码

以下是一个简化的示例,展示如何使用Python和CoppeliaSim远程API来控制UR5机器人沿着给定的轨迹运行。

1. Python脚本 - ur5_path_planning.py
import sim
import time
import numpy as np

# 连接到CoppeliaSim
sim.simxFinish(-1)  # 关闭所有打开的连接
clientID = sim.simxStart('127.0.0.1', 19997, True, True, 5000, 5)  # 连接CoppeliaSim

if clientID != -1:
    print('Connected to remote API server')

    # 获取UR5关节句柄
    joint_names = ['UR5_joint1', 'UR5_joint2', 'UR5_joint3', 'UR5_joint4', 'UR5_joint5', 'UR5_joint6']
    joint_handles = [sim.simxGetObjectHandle(clientID, name, sim.simx_opmode_blocking)[1] for name in joint_names]

    # 定义目标轨迹(简化版)
    waypoints = [
        [0.4, 0.0, 0.2],  # 起始点
        [0.4, 0.2, 0.2],  # 中间点
        [0.4, 0.2, 0.4],  # 高度变化
        [0.4, 0.0, 0.4],  # 返回中心但更高
        [0.4, 0.0, 0.2]   # 回到起始高度
    ]

    def ik_solver(target_position):
        """简单的逆运动学求解器,此处仅为示意"""
        # 实际应用中应使用合适的IK算法或库
        return np.random.rand(6) * 2 * np.pi - np.pi  # 返回随机角度值作为示例

    # 控制机器人沿轨迹移动
    for point in waypoints:
        angles = ik_solver(point)
        for i, handle in enumerate(joint_handles):
            sim.simxSetJointTargetPosition(clientID, handle, angles[i], sim.simx_opmode_oneshot)
        time.sleep(2)  # 等待一段时间以确保动作完成

    # 断开与CoppeliaSim的连接
    sim.simxFinish(clientID)
else:
    print('Failed connecting to remote API server')
2. CoppeliaSim 场景设置
  • 在CoppeliaSim中创建一个新场景。
  • 添加UR5机器人模型。
  • 根据需要添加地面、障碍物和其他物体来模拟仓库环境。
  • 确保UR5机器人的关节名称与Python脚本中的名称相匹配。

注意事项

  • 上述代码中的ik_solver函数只是一个占位符,实际应用中应使用合适的逆运动学算法或库(例如ikpyscipy.optimize)来计算关节角度。
  • simxSetJointTargetPosition用于设置关节的目标位置。根据实际情况调整控制模式(例如从simx_opmode_oneshot改为simx_opmode_blocking)以获得更好的同步效果。
  • 如果遇到性能问题,考虑优化路径规划算法或减少轨迹点数量。

这个示例提供了一个基础框架,你可以在此基础上进一步扩展和完善,比如加入更精确的逆运动学计算、碰撞检测等功能。在这里插入图片描述
为了使用Python和CoppeliaSim(原V-REP)为UR5机器人进行路径规划,并搭建一个方格场景模拟仓库货物搬运,我们需要遵循以下步骤:

  1. 设置环境:在CoppeliaSim中搭建仓库场景。
  2. 编写Python脚本:通过CoppeliaSim的远程API控制UR5机器人执行给定的轨迹。
  3. 路径规划:定义连续三维轨迹坐标点。

步骤 1: 设置环境

  1. 启动CoppeliaSim
  2. 加载UR5模型:从CoppeliaSim的模型库中加载UR5机器人模型。
  3. 搭建仓库场景:创建货架、地面等物体。

步骤 2: 编写Python脚本

首先,确保你已经安装了CoppeliaSim的远程API库。你可以从CoppeliaSim的安装目录中找到这些文件,并将其添加到你的Python项目中。

import sim
import time
import numpy as np

# 连接到CoppeliaSim
sim.simxFinish(-1)  # 关闭所有打开的连接
clientID = sim.simxStart('127.0.0.1', 19997, True, True, 5000, 5)  # 连接CoppeliaSim

if clientID != -1:
    print('Connected to remote API server')

    # 获取UR5关节句柄
    joint_names = ['UR5_joint1', 'UR5_joint2', 'UR5_joint3', 'UR5_joint4', 'UR5_joint5', 'UR5_joint6']
    joint_handles = [sim.simxGetObjectHandle(clientID, name, sim.simx_opmode_blocking)[1] for name in joint_names]

    # 定义目标轨迹(简化版)
    waypoints = [
        [0.4, 0.0, 0.2],  # 起始点
        [0.4, 0.2, 0.2],  # 中间点
        [0.4, 0.2, 0.4],  # 高度变化
        [0.4, 0.0, 0.4],  # 返回中心但更高
        [0.4, 0.0, 0.2]   # 回到起始高度
    ]

    def ik_solver(target_position):
        """简单的逆运动学求解器,此处仅为示意"""
        # 实际应用中应使用合适的IK算法或库
        return np.random.rand(6) * 2 * np.pi - np.pi  # 返回随机角度值作为示例

    # 控制机器人沿轨迹移动
    for point in waypoints:
        angles = ik_solver(point)
        for i, handle in enumerate(joint_handles):
            sim.simxSetJointTargetPosition(clientID, handle, angles[i], sim.simx_opmode_oneshot)
        time.sleep(2)  # 等待一段时间以确保动作完成

    # 断开与CoppeliaSim的连接
    sim.simxFinish(clientID)
else:
    print('Failed connecting to remote API server')

注意事项

  1. 逆运动学求解器:上述代码中的 ik_solver 函数只是一个占位符,实际应用中应使用合适的逆运动学算法或库(例如 ikpyscipy.optimize)来计算关节角度。
  2. 路径规划:根据实际情况调整路径规划算法,确保路径是可行且无碰撞的。
  3. 性能优化:如果遇到性能问题,考虑优化路径规划算法或减少轨迹点数量。

示例场景设置

  1. 启动CoppeliaSim
  2. 加载UR5模型:选择 File -> Import -> Model 并导入UR5模型。
  3. 搭建仓库场景
    • 创建货架:使用 Scene objects -> Box 创建多个盒子并排列成货架。
    • 创建地面:使用 Scene objects -> Plane 创建地面。

示例代码解释

  • 连接CoppeliaSim:使用 sim.simxStart 连接到CoppeliaSim服务器。
  • 获取关节句柄:通过对象名称获取UR5机器人的关节句柄。
  • 定义轨迹点:定义一系列三维坐标点作为机器人需要到达的目标位置。
  • 逆运动学求解器:计算每个目标位置对应的关节角度。
  • 控制机器人移动:设置关节目标位置并等待动作完成。

希望这个示例能帮助你实现UR5机器人在CoppeliaSim中的路径规划和模拟!
在这里插入图片描述
为了使用Python和CoppeliaSim(原V-REP)为UR5机器人进行路径规划,并搭建一个方格场景模拟仓库货物搬运,我们需要遵循以下步骤:

  1. 设置环境:在CoppeliaSim中搭建仓库场景。
  2. 编写Python脚本:通过CoppeliaSim的远程API控制UR5机器人执行给定的轨迹。
  3. 路径规划:定义连续三维轨迹坐标点。

步骤 1: 设置环境

  1. 启动CoppeliaSim
  2. 加载UR5模型:从CoppeliaSim的模型库中加载UR5机器人模型。
  3. 搭建仓库场景
    • 创建货架:使用 Scene objects -> Box 创建多个盒子并排列成货架。
    • 创建地面:使用 Scene objects -> Plane 创建地面。

步骤 2: 编写Python脚本

首先,确保你已经安装了CoppeliaSim的远程API库。你可以从CoppeliaSim的安装目录中找到这些文件,并将其添加到你的Python项目中。

import sim
import time
import numpy as np

# 连接到CoppeliaSim
sim.simxFinish(-1)  # 关闭所有打开的连接
clientID = sim.simxStart('127.0.0.1', 19997, True, True, 5000, 5)  # 连接CoppeliaSim

if clientID != -1:
    print('Connected to remote API server')

    # 获取UR5关节句柄
    joint_names = ['UR5_joint1', 'UR5_joint2', 'UR5_joint3', 'UR5_joint4', 'UR5_joint5', 'UR5_joint6']
    joint_handles = [sim.simxGetObjectHandle(clientID, name, sim.simx_opmode_blocking)[1] for name in joint_names]

    # 定义目标轨迹(简化版)
    waypoints = [
        [0.4, 0.0, 0.2],  # 起始点
        [0.4, 0.2, 0.2],  # 中间点
        [0.4, 0.2, 0.4],  # 高度变化
        [0.4, 0.0, 0.4],  # 返回中心但更高
        [0.4, 0.0, 0.2]   # 回到起始高度
    ]

    def ik_solver(target_position):
        """简单的逆运动学求解器,此处仅为示意"""
        # 实际应用中应使用合适的IK算法或库
        return np.random.rand(6) * 2 * np.pi - np.pi  # 返回随机角度值作为示例

    # 控制机器人沿轨迹移动
    for point in waypoints:
        angles = ik_solver(point)
        for i, handle in enumerate(joint_handles):
            sim.simxSetJointTargetPosition(clientID, handle, angles[i], sim.simx_opmode_oneshot)
        time.sleep(2)  # 等待一段时间以确保动作完成

    # 断开与CoppeliaSim的连接
    sim.simxFinish(clientID)
else:
    print('Failed connecting to remote API server')

注意事项

  1. 逆运动学求解器:上述代码中的 ik_solver 函数只是一个占位符,实际应用中应使用合适的逆运动学算法或库(例如 ikpyscipy.optimize)来计算关节角度。
  2. 路径规划:根据实际情况调整路径规划算法,确保路径是可行且无碰撞的。
  3. 性能优化:如果遇到性能问题,考虑优化路径规划算法或减少轨迹点数量。

示例场景设置

  1. 启动CoppeliaSim
  2. 加载UR5模型:选择 File -> Import -> Model 并导入UR5模型。
  3. 搭建仓库场景
    • 创建货架:使用 Scene objects -> Box 创建多个盒子并排列成货架。
    • 创建地面:使用 Scene objects -> Plane 创建地面。

示例代码解释

  • 连接CoppeliaSim:使用 sim.simxStart 连接到CoppeliaSim服务器。
  • 获取关节句柄:通过对象名称获取UR5机器人的关节句柄。
  • 定义轨迹点:定义一系列三维坐标点作为机器人需要到达的目标位置。
  • 逆运动学求解器:计算每个目标位置对应的关节角度。
  • 控制机器人移动:设置关节目标位置并等待动作完成。

希望这个示例能帮助你实现UR5机器人在CoppeliaSim中的路径规划和模拟!

逆运动学求解器示例

这里提供一个简单的逆运动学求解器示例,使用 ikpy 库:

from ikpy.chain import Chain
import numpy as np

# 定义UR5的DH参数
dh_params = [
    [0, 0, 0.16015, np.pi / 2],
    [0, 0, 0.1253, 0],
    [0, 0, 0.1342, 0],
    [0, 0, 0.134325, 0],
    [0, 0, 0.0922, 0],
    [0, 0, 0.0823, 0]
]

chain = Chain.from_dh(dh_params)

def ik_solver(target_position):
    target_pose = np.array([
        target_position[0],
        target_position[1],
        target_position[2],
        0,
        0,
        0
    ])
    angles = chain.inverse_kinematics(target_pose)
    return angles

将上述 ik_solver 函数替换到之前的Python脚本中即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值