基于matlab的车辆车型识别系统
【车型识别】基于计算机视觉设计,含GUI界面
步骤:作差识别,灰度处理,去除干扰,识别。
功能:识别多种汽车车型,小型车,中型车,公交车!
代码结构清晰,含有注释。
以下是一个基于 MATLAB 的车辆车型识别系统的实现代码,包含 GUI 界面。系统通过计算机视觉技术完成车辆检测与车型分类(小型车、中型车、公交车)。以下是详细的步骤和代码。
功能概述
- 图像预处理:
- 灰度化: 将彩色图像转换为灰度图像。
- 去噪: 使用高斯滤波去除噪声。
- 边缘检测: 使用 Canny 边缘检测提取车辆轮廓。
- 车辆检测:
- 使用形态学操作(如腐蚀和膨胀)增强车辆区域。
- 使用连通区域分析提取车辆轮廓。
- 车型分类:
- 根据车辆的面积或长宽比进行分类:
- 小型车:面积较小。
- 中型车:面积适中。
- 公交车:面积较大。
- 根据车辆的面积或长宽比进行分类:
- GUI 界面设计:
- 用户可以加载图像、调整参数并查看识别结果。
MATLAB 代码
主程序
function VehicleTypeRecognitionGUI
% 创建 GUI 窗口
figure('Name', 'Vehicle Type Recognition', 'NumberTitle', 'off', ...
'Position', [100, 100, 1200, 600], 'MenuBar', 'none', 'ToolBar', 'none');
% 载入图像按钮
uicontrol('Style', 'pushbutton', 'String', 'Load Image', ...
'Position', [20, 550, 100, 30], 'Callback', @loadImage);
% 开始识别按钮
uicontrol('Style', 'pushbutton', 'String', 'Start Recognition', ...
'Position', [140, 550, 120, 30], 'Callback', @startRecognition);
% 原始图像显示区域
axes('Position', [0.05, 0.3, 0.3, 0.6]);
title('Original Image');
% 分割结果显示区域
axes('Position', [0.4, 0.3, 0.3, 0.6]);
title('Segmented Vehicles');
% 初始化变量
handles = [];
handles.image = [];
guidata(gcf, handles);
% 加载图像回调函数
function loadImage(~, ~)
[file, path] = uigetfile({'*.jpg;*.png', 'Image Files (*.jpg, *.png)'});
if isequal(file, 0)
return;
end
imagePath = fullfile(path, file);
img = imread(imagePath);
handles.image = img;
axes(findobj('Tag', 'OriginalImage'));
imshow(img);
guidata(gcf, handles);
end
% 开始识别回调函数
function startRecognition(~, ~)
if isempty(handles.image)
errordlg('Please load an image first!', 'Error');
return;
end
% 图像预处理
grayImg = rgb2gray(handles.image); % 灰度化
denoisedImg = imgaussfilt(grayImg, 2); % 高斯滤波去噪
edges = edge(denoisedImg, 'Canny'); % 边缘检测
% 形态学操作
se = strel('disk', 2);
closedEdges = imclose(edges, se);
% 连通区域分析
stats = regionprops(closedEdges, 'Area', 'BoundingBox', 'Centroid');
filteredStats = stats([stats.Area] > 500); % 过滤小区域
% 绘制检测结果
axes(findobj('Tag', 'SegmentedImage'));
imshow(handles.image);
hold on;
for i = 1:length(filteredStats)
bbox = filteredStats(i).BoundingBox;
rectangle('Position', bbox, 'EdgeColor', 'r', 'LineWidth', 2);
% 车型分类
area = filteredStats(i).Area;
if area < 5000
vehicleType = 'Small Car';
color = 'g';
elseif area < 15000
vehicleType = 'Medium Car';
color = 'b';
else
vehicleType = 'Bus';
color = 'y';
end
% 显示车型标签
centroid = filteredStats(i).Centroid;
text(centroid(1), centroid(2), vehicleType, 'Color', color, ...
'FontSize', 12, 'FontWeight', 'bold');
end
hold off;
end
end
—
功能说明
- 加载图像:
- 用户可以选择一张包含车辆的图像。
- 开始识别:
- 程序会自动完成车辆检测与分类,并在图像上标注车辆类型。
- 分类规则:
- 小型车: 面积小于 5000。
- 中型车: 面积介于 5000 和 15000 之间。
- 公交车: 面积大于 15000。
GUI 示例运行
- 打开 GUI 界面,点击“Load Image”按钮选择一张包含车辆的图像。
- 点击“Start Recognition”按钮,程序会自动完成车辆检测与分类。
- 在界面上查看分割结果和车型标注。
注意事项
- 参数调整:
- 面积分界值(如 5000 和 15000)可以根据实际需求调整。
- 形态学操作中的结构元素大小(
strel
)也可以根据图像分辨率优化。
- 扩展功能:
- 可以使用深度学习模型(如 YOLO 或 Faster R-CNN)提升检测精度。
- 添加保存结果的功能,方便后续分析。
- 硬件要求:
- 对于高分辨率图像,建议使用性能较高的计算机。
通过上述方法,您可以快速搭建一个基于 MATLAB 的车辆车型识别系统,并结合 GUI 界面实现良好的用户体验!