基于matlab的钢板表面缺陷分类与测量检测
【缺陷检测】计算机视觉,含GUI界面
(1)依据金属表面缺陷图片的特性,对图片进行适当的灰度变换(对比度增强与滤波处理);
(2)对金属表面缺陷图片进行全局优化阈值分割;
(3)提取二值图片区域边界坐标;
(4)对金属缺陷进行特征提取;
(5)对金属缺陷进行分类有监督训练;
(6)完成对金属缺陷类型的判断与位置大小的计算;
(7)完成金属缺陷检测的GUI设计
文章目录
在基于 MATLAB 的钢板表面缺陷分类与测量检测中,我们可以使用计算机视觉技术来实现图像的预处理、特征提取、分类和缺陷测量。以下是一个完整的方案,包括 GUI 界面的设计和代码实现。
1. 功能概述
- 输入: 钢板表面的图像文件。
- 输出: 缺陷分类结果(如裂纹、划痕、孔洞等)以及缺陷的尺寸测量。
- 主要步骤:
- 图像预处理(灰度化、去噪、边缘检测等)。
- 特征提取(形状、纹理、颜色等特征)。
- 分类(使用机器学习或深度学习模型)。
- 缺陷测量(计算缺陷面积、长度等)。
- GUI 界面实现用户交互。
2. MATLAB 实现
(1) 主要代码模块
1. 图像预处理
function processedImage = preprocessImage(imagePath)
% 读取图像
img = imread(imagePath);
% 转换为灰度图像
grayImg = rgb2gray(img);
% 去噪(高斯滤波)
denoisedImg = imgaussfilt(grayImg, 2);
% 边缘检测(Canny算法)
edges = edge(denoisedImg, 'Canny');
% 显示预处理结果
figure;
subplot(1, 3, 1), imshow(img), title('原始图像');
subplot(1, 3, 2), imshow(grayImg), title('灰度图像');
subplot(1, 3, 3), imshow(edges), title('边缘检测');
processedImage = edges;
end
2. 特征提取
function features = extractFeatures(processedImage)
% 计算区域属性
stats = regionprops(processedImage, 'Area', 'Perimeter', 'Eccentricity', 'BoundingBox');
% 提取特征
areas = [stats.Area];
perimeters = [stats.Perimeter];
eccentricities = [stats.Eccentricity];
% 返回特征向量
features = [areas, perimeters, eccentricities];
end
3. 缺陷分类
function label = classifyDefect(features)
% 使用简单的阈值分类(可根据实际需求替换为机器学习模型)
area = features(1); % 面积
perimeter = features(2); % 周长
eccentricity = features(3); % 偏心率
if area > 500 && perimeter > 100 && eccentricity < 0.8
label = '裂纹';
elseif area > 200 && area <= 500
label = '划痕';
else
label = '孔洞';
end
end
4. 缺陷测量
function measureDefects(processedImage)
% 统计缺陷信息
stats = regionprops(processedImage, 'Area', 'BoundingBox');
% 显示每个缺陷的面积和位置
for i = 1:length(stats)
fprintf('缺陷 %d: 面积 = %.2f, 位置 = [%d, %d]\n', ...
i, stats(i).Area, stats(i).BoundingBox(1), stats(i).BoundingBox(2));
end
end
(2) GUI 界面设计
使用 MATLAB 的 GUIDE
或 App Designer
创建 GUI 界面。
GUI 功能描述
- 按钮:加载图像
- 用户可以选择一张钢板表面图像。
- 按钮:开始检测
- 触发图像预处理、特征提取、分类和测量。
- 显示区域:
- 显示原始图像、预处理图像和检测结果。
- 文本框:
- 显示缺陷分类结果和测量数据。
GUI 核心代码
function varargout = DefectDetectionGUI(varargin)
% 创建 GUI 界面
gui = guidata(hObject);
% 加载图像按钮回调
function loadImage_Callback(hObject, eventdata, handles)
[file, path] = uigetfile({'*.jpg;*.png', 'Image Files (*.jpg, *.png)'});
if isequal(file, 0)
return;
end
imagePath = fullfile(path, file);
axes(handles.axesInput);
imshow(imread(imagePath));
handles.imagePath = imagePath;
guidata(hObject, handles);
end
% 开始检测按钮回调
function startDetection_Callback(hObject, eventdata, handles)
% 图像预处理
processedImage = preprocessImage(handles.imagePath);
% 特征提取
features = extractFeatures(processedImage);
% 缺陷分类
label = classifyDefect(features);
% 缺陷测量
measureDefects(processedImage);
% 显示结果
set(handles.textResult, 'String', ['缺陷类型: ', label]);
axes(handles.axesOutput);
imshow(processedImage);
end
end
3. 示例运行
- 打开 GUI 界面,点击“加载图像”按钮选择一张钢板表面图像。
- 点击“开始检测”按钮,程序会自动完成缺陷分类和测量。
- 在界面上查看分类结果和缺陷测量数据。
—
4. 注意事项
- 训练分类模型: 如果需要更高精度的分类,可以使用深度学习模型(如 CNN)进行训练,并加载预训练模型。
- 优化 GUI: 可以进一步美化界面,添加更多功能,如保存检测结果、批量处理等。
- 硬件要求: 对于大规模图像处理,建议使用性能较高的计算机。
通过上述方法,你可以快速搭建一个基于 MATLAB 的钢板表面缺陷分类与测量系统,并结合 GUI 界面实现良好的用户体验!