基于matlab的钢板表面缺陷分类与测量检测 【缺陷检测】计算机视觉,含GUI界面

基于matlab的钢板表面缺陷分类与测量检测
【缺陷检测】计算机视觉,含GUI界面
(1)依据金属表面缺陷图片的特性,对图片进行适当的灰度变换(对比度增强与滤波处理);
(2)对金属表面缺陷图片进行全局优化阈值分割;
(3)提取二值图片区域边界坐标;
(4)对金属缺陷进行特征提取;
(5)对金属缺陷进行分类有监督训练;
(6)完成对金属缺陷类型的判断与位置大小的计算;
(7)完成金属缺陷检测的GUI设计
在这里插入图片描述


在基于 MATLAB 的钢板表面缺陷分类与测量检测中,我们可以使用计算机视觉技术来实现图像的预处理、特征提取、分类和缺陷测量。以下是一个完整的方案,包括 GUI 界面的设计和代码实现。


1. 功能概述

  • 输入: 钢板表面的图像文件。
  • 输出: 缺陷分类结果(如裂纹、划痕、孔洞等)以及缺陷的尺寸测量。
  • 主要步骤:
    1. 图像预处理(灰度化、去噪、边缘检测等)。
    2. 特征提取(形状、纹理、颜色等特征)。
    3. 分类(使用机器学习或深度学习模型)。
    4. 缺陷测量(计算缺陷面积、长度等)。
    5. GUI 界面实现用户交互。

2. MATLAB 实现

(1) 主要代码模块
1. 图像预处理
function processedImage = preprocessImage(imagePath)
    % 读取图像
    img = imread(imagePath);
    
    % 转换为灰度图像
    grayImg = rgb2gray(img);
    
    % 去噪(高斯滤波)
    denoisedImg = imgaussfilt(grayImg, 2);
    
    % 边缘检测(Canny算法)
    edges = edge(denoisedImg, 'Canny');
    
    % 显示预处理结果
    figure;
    subplot(1, 3, 1), imshow(img), title('原始图像');
    subplot(1, 3, 2), imshow(grayImg), title('灰度图像');
    subplot(1, 3, 3), imshow(edges), title('边缘检测');
    
    processedImage = edges;
end
2. 特征提取
function features = extractFeatures(processedImage)
    % 计算区域属性
    stats = regionprops(processedImage, 'Area', 'Perimeter', 'Eccentricity', 'BoundingBox');
    
    % 提取特征
    areas = [stats.Area];
    perimeters = [stats.Perimeter];
    eccentricities = [stats.Eccentricity];
    
    % 返回特征向量
    features = [areas, perimeters, eccentricities];
end
3. 缺陷分类
function label = classifyDefect(features)
    % 使用简单的阈值分类(可根据实际需求替换为机器学习模型)
    area = features(1); % 面积
    perimeter = features(2); % 周长
    eccentricity = features(3); % 偏心率
    
    if area > 500 && perimeter > 100 && eccentricity < 0.8
        label = '裂纹';
    elseif area > 200 && area <= 500
        label = '划痕';
    else
        label = '孔洞';
    end
end
4. 缺陷测量
function measureDefects(processedImage)
    % 统计缺陷信息
    stats = regionprops(processedImage, 'Area', 'BoundingBox');
    
    % 显示每个缺陷的面积和位置
    for i = 1:length(stats)
        fprintf('缺陷 %d: 面积 = %.2f, 位置 = [%d, %d]\n', ...
            i, stats(i).Area, stats(i).BoundingBox(1), stats(i).BoundingBox(2));
    end
end
(2) GUI 界面设计

使用 MATLAB 的 GUIDEApp Designer 创建 GUI 界面。

GUI 功能描述
  1. 按钮:加载图像
    • 用户可以选择一张钢板表面图像。
  2. 按钮:开始检测
    • 触发图像预处理、特征提取、分类和测量。
  3. 显示区域:
    • 显示原始图像、预处理图像和检测结果。
  4. 文本框:
    • 显示缺陷分类结果和测量数据。
GUI 核心代码
function varargout = DefectDetectionGUI(varargin)
    % 创建 GUI 界面
    gui = guidata(hObject);
    
    % 加载图像按钮回调
    function loadImage_Callback(hObject, eventdata, handles)
        [file, path] = uigetfile({'*.jpg;*.png', 'Image Files (*.jpg, *.png)'});
        if isequal(file, 0)
            return;
        end
        imagePath = fullfile(path, file);
        axes(handles.axesInput);
        imshow(imread(imagePath));
        handles.imagePath = imagePath;
        guidata(hObject, handles);
    end
    
    % 开始检测按钮回调
    function startDetection_Callback(hObject, eventdata, handles)
        % 图像预处理
        processedImage = preprocessImage(handles.imagePath);
        
        % 特征提取
        features = extractFeatures(processedImage);
        
        % 缺陷分类
        label = classifyDefect(features);
        
        % 缺陷测量
        measureDefects(processedImage);
        
        % 显示结果
        set(handles.textResult, 'String', ['缺陷类型: ', label]);
        axes(handles.axesOutput);
        imshow(processedImage);
    end
end

在这里插入图片描述


3. 示例运行

  1. 打开 GUI 界面,点击“加载图像”按钮选择一张钢板表面图像。
  2. 点击“开始检测”按钮,程序会自动完成缺陷分类和测量。
  3. 在界面上查看分类结果和缺陷测量数据。

在这里插入图片描述

4. 注意事项

  1. 训练分类模型: 如果需要更高精度的分类,可以使用深度学习模型(如 CNN)进行训练,并加载预训练模型。
  2. 优化 GUI: 可以进一步美化界面,添加更多功能,如保存检测结果、批量处理等。
  3. 硬件要求: 对于大规模图像处理,建议使用性能较高的计算机。

通过上述方法,你可以快速搭建一个基于 MATLAB 的钢板表面缺陷分类与测量系统,并结合 GUI 界面实现良好的用户体验!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值