Matlab多车编队自适应协同控制 通过考虑前车的加速度和距离,实现ACC自适应协同控制的多车编队(5辆车),达到自适应巡航控制,并在carsim/Simulink仿真平台上进行模拟。

Matlab多车编队自适应协同控制
通过考虑前车的加速度和距离,实现ACC自适应协同控制的多车编队(5辆车),达到自适应巡航控制,并在carsim/Simulink仿真平台上进行模拟。

该算法结构分为两层:上层是滑膜控制器,用于生成期望的加速度;下层则通过调节节气门开度和刹车制动压力来控制车速。

在仿真中,输出以下数据:

  1. 5辆车的前车与后车之间的跟踪误差;
  2. 5辆车的车速变化;
  3. 4辆车的节气门和制动压力的变化。

基于滑膜控制的效果非常好,不亚于模型预测控制(MPC)!
此外,该方法在实车试验中也十分方便。
在这里插入图片描述


以下是基于 MATLAB/Simulink 的多车编队自适应协同控制(ACC)代码示例。该代码实现了滑膜控制器生成期望加速度,并通过调节节气门开度和刹车制动压力来实现车速控制。仿真平台可结合 CarSim 进行联合仿真。


MATLAB 代码

1. 主程序
% 多车编队自适应协同控制 (ACC)
clc;
clear;
close all;

% 参数初始化
dt = 0.1; % 时间步长
T = 50; % 总仿真时间
t = 0:dt:T; % 时间序列
N = length(t); % 时间步数

% 车辆参数
num_cars = 5; % 车辆数量
v_desired = 30; % 目标车速 (m/s)
d_desired = 20; % 目标车间距 (m)

% 初始状态 [x, v] (位置和速度)
state = zeros(num_cars, 2);
state(:, 1) = linspace(0, -d_desired*(num_cars-1), num_cars); % 初始位置
state(:, 2) = v_desired * ones(num_cars, 1); % 初始速度

% 滑膜控制器参数
k1 = 1.0; % 滑膜增益1
k2 = 0.5; % 滑膜增益2

% 存储数据
distance_error = zeros(N, num_cars-1); % 跟踪误差
speeds = zeros(N, num_cars); % 各车速度
throttle = zeros(N, num_cars); % 节气门开度
brake = zeros(N, num_cars); % 制动压力

% 主循环
for i = 1:N
    % 当前状态
    x = state(:, 1); % 各车位置
    v = state(:, 2); % 各车速度
    
    % 计算跟踪误差
    for j = 1:num_cars-1
        distance_error(i, j) = (x(j+1) - x(j)) - d_desired; % 前车与后车的间距误差
    end
    
    % 滑膜控制器计算期望加速度
    a_desired = zeros(num_cars, 1);
    for j = 1:num_cars
        if j == 1
            % 第一辆车:以目标车速行驶
            e_v = v_desired - v(j);
        else
            % 后续车辆:跟随前车
            e_v = v(j-1) - v(j); % 速度误差
            e_d = distance_error(i, j-1); % 距离误差
        end
        
        % 滑膜控制律
        s = e_v + k1 * e_d; % 滑膜面
        a_desired(j) = k2 * sign(s); % 期望加速度
    end
    
    % 下层控制器:节气门和制动压力调节
    for j = 1:num_cars
        if a_desired(j) > 0
            throttle(i, j) = min(a_desired(j) / 2, 1); % 节气门开度限制在 [0, 1]
            brake(i, j) = 0; % 不制动
        else
            throttle(i, j) = 0; % 不加速
            brake(i, j) = min(-a_desired(j) / 2, 1); % 制动压力限制在 [0, 1]
        end
    end
    
    % 更新状态
    for j = 1:num_cars
        state(j, 2) = state(j, 2) + a_desired(j) * dt; % 更新速度
        state(j, 1) = state(j, 1) + state(j, 2) * dt; % 更新位置
    end
    
    % 保存速度数据
    speeds(i, :) = state(:, 2);
end

% 绘图
figure;
subplot(3, 1, 1);
plot(t, distance_error);
xlabel('时间 (s)');
ylabel('跟踪误差 (m)');
title('前后车之间的跟踪误差');
legend(arrayfun(@(x) ['车' num2str(x)], 1:num_cars-1, 'UniformOutput', false));

subplot(3, 1, 2);
plot(t, speeds);
xlabel('时间 (s)');
ylabel('车速 (m/s)');
title('各车车速变化');
legend(arrayfun(@(x) ['车' num2str(x)], 1:num_cars, 'UniformOutput', false));

subplot(3, 1, 3);
plot(t, throttle, '--', t, brake, '-.');
xlabel('时间 (s)');
ylabel('控制输入');
title('节气门和制动压力变化');
legend(arrayfun(@(x) ['车' num2str(x)], 1:num_cars, 'UniformOutput', false));

2. Simulink 模型

将上述代码集成到 Simulink 中,可以按照以下步骤构建模型:

  1. 上层滑膜控制器

    • 使用 MATLAB Function 模块实现滑膜控制律。
    • 输入包括当前车速和前车信息。
    • 输出为期望加速度。
  2. 下层执行器控制

    • 使用两个 Gain 模块分别模拟节气门和制动压力的调节。
    • 输入为期望加速度,输出为节气门开度和制动压力。
  3. 车辆动力学模型

    • 在 Simulink 中使用积分器模块实现车辆的速度和位置更新。
    • 输入为节气门开度和制动压力,输出为车辆状态。
  4. CarSim 接口

    • 将 Simulink 模型与 CarSim 连接,用于高精度车辆动力学仿真。

3. 输出结果

运行仿真后,您将获得以下结果:

  1. 跟踪误差:前后车之间的距离误差随时间的变化。
  2. 车速变化:每辆车的速度随时间的变化。
  3. 控制输入:节气门开度和制动压力的变化曲线。

4. 注意事项

  1. 参数调整

    • 根据实际需求调整滑膜控制器的增益 ( k_1 ) 和 ( k_2 )。
    • 调整节气门和制动压力的映射关系,确保控制输入符合实际车辆特性。
  2. 实车试验

    • 如果需要在实车上部署,可以将算法嵌入到车载控制器中,并通过 CAN 总线读取车辆状态。
  3. CarSim 联合仿真

    • 在 CarSim 中设置车辆参数和道路环境,并通过 Simulink 接口传递控制信号。

在这里插入图片描述
我将为您编写一个基于滑膜控制(Sliding Mode Control, SMC)的多车编队自适应巡航控制(ACC)系统的 MATLAB/Simulink 代码示例。这个系统包括上层滑膜控制器和下层车辆动力学模型,并且可以与 CarSim 进行联合仿真。

1. 滑膜控制器 (SMC) 的实现

MATLAB Function 模块代码

在 Simulink 中创建一个名为 SMC_Controller 的 MATLAB Function 模块,并输入以下代码:

function [a_desired] = SMC_Controller(v_current, v_leader, d_current, d_desired)
% 输入参数:
%   v_current: 当前车辆速度
%   v_leader: 前车速度
%   d_current: 当前车间距
%   d_desired: 目标车间距

% 控制器参数
k1 = 1.0; % 滑膜增益1
k2 = 0.5; % 滑膜增益2

% 计算误差
e_v = v_leader - v_current; % 速度误差
e_d = d_current - d_desired; % 距离误差

% 滑膜面
s = e_v + k1 * e_d;

% 滑膜控制律
a_desired = k2 * sign(s); % 期望加速度

2. 下层车辆动力学模型

Simulink 模型结构

创建一个新的 Simulink 模型,并添加以下模块:

  • Constant 模块:用于设置目标车间距 (d_{desired}) 和初始条件。
  • Inport 模块:用于接收来自 CarSim 的信号(如前车速度、当前车间距等)。
  • Outport 模块:用于输出控制信号(如节气门开度、制动压力等)到 CarSim。
  • Integrator 模块:用于计算车辆的速度和位置。
  • Gain 模块:用于调节节气门开度和制动压力。
  • Switch 模块:用于选择加速或制动。
  • Scope 模块:用于显示仿真结果。
连接线和参数设置

按照以下步骤连接各个模块并设置参数:

  1. 连接输入信号

    • 将前车速度 (v_{leader}) 和当前车间距 (d_{current}) 连接到 SMC_Controller 模块。
  2. 连接输出信号

    • SMC_Controller 模块的输出 (a_{desired}) 连接到节气门和制动压力的调节模块。
  3. 设置积分器

    • 使用两个 Integrator 模块分别计算车辆的速度和位置。
  4. 设置开关模块

    • 根据期望加速度 (a_{desired}) 的正负选择加速或制动。

3. CarSim 联合仿真

CarSim 设置

在 CarSim 中设置车辆参数和道路环境,并通过 Co-Simulation 接口与 Simulink 进行联合仿真:

  1. 导入车辆模型

    • 打开 CarSim 并导入车辆模型文件 ACC_5th_Car_SMC_5.cpar
  2. 设置联合仿真接口

    • 在 CarSim 中配置 Co-Simulation 接口,确保与 Simulink 的通信正常。
  3. 运行仿真

    • 启动 CarSim 和 Simulink,开始联合仿真。

4. 输出结果分析

数据记录和可视化

在 Simulink 中使用 Scope 模块记录和显示以下数据:

  1. 跟踪误差

    • 显示前后车之间的距离误差随时间的变化。
  2. 车速变化

    • 显示每辆车的速度随时间的变化。
  3. 控制输入

    • 显示节气门开度和制动压力的变化曲线。

5. 完整的 Simulink 模型代码

以下是完整的 Simulink 模型代码示例:

% 创建新的 Simulink 模型
new_system('ACC_SMC_Model');
open_system('ACC_SMC_Model');

% 添加模块
add_block('simulink/CommonlyUsedBlocks/Constant', 'ACC_SMC_Model/desired_distance');
set_param('ACC_SMC_Model/desired_distance', 'Value', '20'); % 目标车间距

add_block('simulink/User-DefinedFunctions/MATLABFunction', 'ACC_SMC_Model/SMC_Controller');
set_param('ACC_SMC_Model/SMC_Controller', 'FunctionName', 'SMC_Controller');

add_block('simulink/Continuous/Integrator', 'ACC_SMC_Model/speed_integrator');
add_block('simulink/Continuous/Integrator', 'ACC_SMC_Model/position_integrator');

add_block('simulink/MathOperations/Gain', 'ACC_SMC_Model/throttle_gain');
set_param('ACC_SMC_Model/throttle_gain', 'Gain', '0.5'); % 节气门增益

add_block('simulink/MathOperations/Gain', 'ACC_SMC_Model/brake_gain');
set_param('ACC_SMC_Model/brake_gain', 'Gain', '-0.5'); % 制动增益

add_block('simulink/Logic and Bit Operations/Switch', 'ACC_SMC_Model/control_switch');

add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/tracking_error_scope');
add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/speed_scope');
add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/control_input_scope');

% 连接线
add_line('ACC_SMC_Model', 'desired_distance/1', 'SMC_Controller/4');
add_line('ACC_SMC_Model', 'leader_speed/1', 'SMC_Controller/2');
add_line('ACC_SMC_Model', 'current_distance/1', 'SMC_Controller/3');
add_line('ACC_SMC_Model', 'SMC_Controller/1', 'control_switch/1');
add_line('ACC_SMC_Model', 'control_switch/1', 'throttle_gain/1');
add_line('ACC_SMC_Model', 'control_switch/2', 'brake_gain/1');
add_line('ACC_SMC_Model', 'throttle_gain/1', 'speed_integrator/1');
add_line('ACC_SMC_Model', 'speed_integrator/1', 'position_integrator/1');
add_line('ACC_SMC_Model', 'position_integrator/1', 'tracking_error_scope/1');
add_line('ACC_SMC_Model', 'speed_integrator/1', 'speed_scope/1');
add_line('ACC_SMC_Model', 'throttle_gain/1', 'control_input_scope/1');
add_line('ACC_SMC_Model', 'brake_gain/1', 'control_input_scope/2');

% 打开模型查看
open_system('ACC_SMC_Model');

在这里插入图片描述
由于您提供的文件列表中包含 Simulink 模型文件和 CarSim 文件,我将为您提供一个基于这些文件的多车编队自适应协同控制(ACC)系统的实现示例。我们将使用 MATLAB/Simulink 和 CarSim 进行联合仿真。

1. 创建 Simulink 模型

首先,我们需要创建一个 Simulink 模型来实现滑膜控制器(SMC)和车辆动力学模型,并与 CarSim 进行联合仿真。

步骤 1: 打开或创建一个新的 Simulink 模型
% 打开现有的 Simulink 模型
open_system('ACC_SMC_5Car.mdl');
步骤 2: 添加必要的模块

在 Simulink 中添加以下模块:

  • InportOutport 模块:用于与 CarSim 的数据交换。
  • MATLAB Function 模块:用于实现滑膜控制器。
  • Integrator 模块:用于计算车辆的速度和位置。
  • Gain 模块:用于调节节气门开度和制动压力。
  • Switch 模块:用于选择加速或制动。
  • Scope 模块:用于显示仿真结果。
步骤 3: 编写滑膜控制器代码

MATLAB Function 模块中编写滑膜控制器代码:

function [a_desired] = SMC_Controller(v_current, v_leader, d_current, d_desired)
% 输入参数:
%   v_current: 当前车辆速度
%   v_leader: 前车速度
%   d_current: 当前车间距
%   d_desired: 目标车间距

% 控制器参数
k1 = 1.0; % 滑膜增益1
k2 = 0.5; % 滑膜增益2

% 计算误差
e_v = v_leader - v_current; % 速度误差
e_d = d_current - d_desired; % 距离误差

% 滑膜面
s = e_v + k1 * e_d;

% 滑膜控制律
a_desired = k2 * sign(s); % 期望加速度

2. 设置 CarSim 联合仿真

步骤 1: 导入 CarSim 车辆模型

在 CarSim 中导入车辆模型文件 ACC_5th_Car_SMC_5.cpar

步骤 2: 配置联合仿真接口

在 CarSim 中配置 Co-Simulation 接口,确保与 Simulink 的通信正常。

3. 完整的 Simulink 模型结构

以下是完整的 Simulink 模型结构示例:

% 创建新的 Simulink 模型
new_system('ACC_SMC_Model');
open_system('ACC_SMC_Model');

% 添加模块
add_block('simulink/CommonlyUsedBlocks/Constant', 'ACC_SMC_Model/desired_distance');
set_param('ACC_SMC_Model/desired_distance', 'Value', '20'); % 目标车间距

add_block('simulink/User-DefinedFunctions/MATLABFunction', 'ACC_SMC_Model/SMC_Controller');
set_param('ACC_SMC_Model/SMC_Controller', 'FunctionName', 'SMC_Controller');

add_block('simulink/Continuous/Integrator', 'ACC_SMC_Model/speed_integrator');
add_block('simulink/Continuous/Integrator', 'ACC_SMC_Model/position_integrator');

add_block('simulink/MathOperations/Gain', 'ACC_SMC_Model/throttle_gain');
set_param('ACC_SMC_Model/throttle_gain', 'Gain', '0.5'); % 节气门增益

add_block('simulink/MathOperations/Gain', 'ACC_SMC_Model/brake_gain');
set_param('ACC_SMC_Model/brake_gain', 'Gain', '-0.5'); % 制动增益

add_block('simulink/Logic and Bit Operations/Switch', 'ACC_SMC_Model/control_switch');

add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/tracking_error_scope');
add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/speed_scope');
add_block('simulink/Sinks/Scope', 'ACC_SMC_Model/control_input_scope');

% 连接线
add_line('ACC_SMC_Model', 'desired_distance/1', 'SMC_Controller/4');
add_line('ACC_SMC_Model', 'leader_speed/1', 'SMC_Controller/2');
add_line('ACC_SMC_Model', 'current_distance/1', 'SMC_Controller/3');
add_line('ACC_SMC_Model', 'SMC_Controller/1', 'control_switch/1');
add_line('ACC_SMC_Model', 'control_switch/1', 'throttle_gain/1');
add_line('ACC_SMC_Model', 'control_switch/2', 'brake_gain/1');
add_line('ACC_SMC_Model', 'throttle_gain/1', 'speed_integrator/1');
add_line('ACC_SMC_Model', 'speed_integrator/1', 'position_integrator/1');
add_line('ACC_SMC_Model', 'position_integrator/1', 'tracking_error_scope/1');
add_line('ACC_SMC_Model', 'speed_integrator/1', 'speed_scope/1');
add_line('ACC_SMC_Model', 'throttle_gain/1', 'control_input_scope/1');
add_line('ACC_SMC_Model', 'brake_gain/1', 'control_input_scope/2');

% 打开模型查看
open_system('ACC_SMC_Model');

4. 运行仿真

在 Simulink 中设置仿真参数并运行仿真:

% 设置仿真参数
set_param('ACC_SMC_Model', 'StopTime', '50');
set_param('ACC_SMC_Model', 'Solver', 'ode45');

% 运行仿真
sim('ACC_SMC_Model');

5. 分析结果

在 Scope 模块中查看仿真结果,包括跟踪误差、车速变化和控制输入的变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值