基于深度学习的表情(情绪)识别系统
基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库
系统可通过摄像头获取实时画面并识别其中的人脸表情,也可以通过读取图片识别
基于深度学习的表情(情绪)识别系统通常依赖于卷积神经网络(CNNs),因为它们在处理图像数据方面非常有效。下面,我将提供一个使用Python和Keras库来构建表情识别系统的简化示例。这个例子会包括数据准备、模型构建、训练以及评估的基本步骤。
数据集
为了演示目的,我们将使用FER2013数据集,它包含了多种面部表情的图像。你可以从kaggle下载该数据集。
环境准备
确保安装了必要的库:
pip install numpy pandas matplotlib keras tensorflow opencv-python
示例代码
1. 导入必要的包
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras.preprocessing.image import ImageDataGenerator
import cv2
import matplotlib.pyplot as plt
2. 加载并预处理数据
def load_fer2013():
data = pd.read_csv('fer2013.csv')
pixels = data['pixels'].tolist()
width, height = 48, 48
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(width, height)
face = cv2.resize(face.astype('uint8'), (width, height))
faces.append(face.astype('float32'))
faces = np.asarray(faces) / 255.0
faces = np.expand_dims(faces, -1)
emotions = to_categorical(data['emotion'])
return faces, emotions
faces, emotions = load_fer2013()
x_train, x_test, y_train, y_test = train_test_split(faces, emotions, test_size=0.2, shuffle=True)
3. 构建模型
model = Sequential()
# 第一层卷积层
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 第二层卷积层
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 第三层卷积层
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 展平层
model.add(Flatten())
# 全连接层
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
# 输出层
model.add(Dense(7, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
4. 数据增强与训练
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1
)
batch_size = 64
epochs = 50
history = model.fit(datagen.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=len(x_train) // batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
5. 模型评估
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])
plt.plot(history.history['accuracy'], label='train accuracy')
plt.plot(history.history['val_accuracy'], label='validation accuracy')
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(loc='upper left')
plt.show()
以上代码提供了一个基本框架,用于构建和训练一个用于表情识别的深度学习模型。请注意,实际应用中可能需要进行更细致的调优,包括调整模型架构、超参数优化等。