三坐标CMM尺寸数据分析系统是对三坐标尺寸数量进行质量分析比如常见的spc分析
某工厂生产一种精密电子元件,其关键质量特性是元件的电阻值,要求电阻值的规格范围为 100 ± 5 Ω(即规格上限 USL = 105 Ω,规格下限 LSL = 95 Ω)。由于生产批量较小,每小时只能抽取 1 个样品进行测量,因此无法使用传统的 X-bar 和 R 图。工厂希望通过 SPC 控制图监控生产过程的稳定性,并及时发现异常情况。
在某一时段内,工厂收集了以下数据(单位:Ω):
小时 | 电阻值 (X) |
---|---|
1 | 101.2 |
2 | 100.8 |
3 | 102.1 |
4 | 99.5 |
5 | 103.5 |
6 | 104.2 |
7 | 98.7 |
8 | 99.2 |
请问:
-
如何建立个体值-移动极差(I-MR)控制图?
-
根据控制图判断过程是否处于统计控制状态?
-
如果发现异常,应采取哪些改进措施?
解决方案:
步骤 1:建立个体值-移动极差(I-MR)控制图
在 SPC 中,当样本量
n=1n = 1n = 1
时,无法计算样本平均值和样本极差,因此使用个体值-移动极差(I-MR)控制图。I 图用于监控过程均值的稳定性,MR 图用于监控过程变异性的稳定性。以下是计算控制图参数的步骤:
1.1 计算 I 图的控制限
I 图的控制限公式如下:
- 中心线(CL):
Xˉ=∑Xk\bar{X} = \frac{\sum X}{k}
\bar{X} = \frac{\sum X}{k}
- 上控制限(UCL):
UCL=Xˉ+3⋅MRˉd2\text{UCL} = \bar{X} + 3 \cdot \frac{\bar{MR}}{d_2}
\text{UCL} = \bar{X} + 3 \cdot \frac{\bar{MR}}{d_2}
- 下控制限(LCL):
LCL=Xˉ−3⋅MRˉd2\text{LCL} = \bar{X} - 3 \cdot \frac{\bar{MR}}{d_2}
\text{LCL} = \bar{X} - 3 \cdot \frac{\bar{MR}}{d_2}
其中:
-
Xˉ\bar{X}
是所有个体值的平均值。\bar{X}
-
MRˉ\bar{MR}
是移动极差的平均值,移动极差(MR)定义为连续两个个体值之间的差的绝对值:\bar{MR}
MRi=∣Xi−Xi−1∣MR_i = |X_i - X_{i-1}|
。MR_i = |X_i - X_{i-1}|
-
d2d_2
是与移动极差计算相关的常数,对于移动极差的样本大小d_2
n=2n = 2
,n = 2
d2=1.128d_2 = 1.128
。d_2 = 1.128
- (k) 是数据点数量(本例中
k=8k = 8
)。k = 8
计算
Xˉ\bar{X}\bar{X}
:
-
Xˉ=101.2+100.8+102.1+99.5+103.5+104.2+98.7+99.28=101.15\bar{X} = \frac{101.2 + 100.8 + 102.1 + 99.5 + 103.5 + 104.2 + 98.7 + 99.2}{8} = 101.15
\bar{X} = \frac{101.2 + 100.8 + 102.1 + 99.5 + 103.5 + 104.2 + 98.7 + 99.2}{8} = 101.15
计算移动极差(MR)并得到
MRˉ\bar{MR}\bar{MR}
: 移动极差从第 2 个数据点开始计算:
小时 | 电阻值 (X) | 移动极差 (MR) |
---|---|---|
1 | 101.2 | - |
2 | 100.8 | 0.4 |
3 | 102.1 | 1.3 |
4 | 99.5 | 2.6 |
5 | 103.5 | 4.0 |
6 | 104.2 | 0.7 |
7 | 98.7 | 5.5 |
8 | 99.2 | 0.5 |
-
MRˉ=0.4+1.3+2.6+4.0+0.7+5.5+0.57=2.14\bar{MR} = \frac{0.4 + 1.3 + 2.6 + 4.0 + 0.7 + 5.5 + 0.5}{7} = 2.14
\bar{MR} = \frac{0.4 + 1.3 + 2.6 + 4.0 + 0.7 + 5.5 + 0.5}{7} = 2.14
计算 I 图的控制限:
- 过程标准差的估计:
σ=MRˉd2=2.141.128=1.897\sigma = \frac{\bar{MR}}{d_2} = \frac{2.14}{1.128} = 1.897
\sigma = \frac{\bar{MR}}{d_2} = \frac{2.14}{1.128} = 1.897
-
UCL=Xˉ+3⋅σ=101.15+3⋅1.897=101.15+5.691=106.841\text{UCL} = \bar{X} + 3 \cdot \sigma = 101.15 + 3 \cdot 1.897 = 101.15 + 5.691 = 106.841
\text{UCL} = \bar{X} + 3 \cdot \sigma = 101.15 + 3 \cdot 1.897 = 101.15 + 5.691 = 106.841
-
LCL=Xˉ−3⋅σ=101.15−3⋅1.897=101.15−5.691=95.459\text{LCL} = \bar{X} - 3 \cdot \sigma = 101.15 - 3 \cdot 1.897 = 101.15 - 5.691 = 95.459
\text{LCL} = \bar{X} - 3 \cdot \sigma = 101.15 - 3 \cdot 1.897 = 101.15 - 5.691 = 95.459
1.2 计算 MR 图的控制限
MR 图的控制限公式如下:
- 中心线(CL):
MRˉ\bar{MR}
\bar{MR}
- 上控制限(UCL):
UCL=D4⋅MRˉ\text{UCL} = D_4 \cdot \bar{MR}
\text{UCL} = D_4 \cdot \bar{MR}
- 下控制限(LCL):
LCL=D3⋅MRˉ\text{LCL} = D_3 \cdot \bar{MR}
\text{LCL} = D_3 \cdot \bar{MR}
其中:
-
D3D_3
和D_3
D4D_4
是与移动极差计算相关的常数,对于D_4
n=2n = 2
,n = 2
D3=0D_3 = 0
,D_3 = 0
D4=3.267D_4 = 3.267
。D_4 = 3.267
计算 MR 图的控制限:
-
UCL=3.267⋅2.14=6.991\text{UCL} = 3.267 \cdot 2.14 = 6.991
\text{UCL} = 3.267 \cdot 2.14 = 6.991
-
LCL=0⋅2.14=0\text{LCL} = 0 \cdot 2.14 = 0
\text{LCL} = 0 \cdot 2.14 = 0
1.3 绘制控制图
根据计算结果,绘制 I 和 MR 控制图如下:
I 图:
-
中心线(CL)= 101.15
-
上控制限(UCL)= 106.841
-
下控制限(LCL)= 95.459
-
绘制数据点:101.2, 100.8, 102.1, 99.5, 103.5, 104.2, 98.7, 99.2
MR 图:
-
中心线(CL)= 2.14
-
上控制限(UCL)= 6.991
-
下控制限(LCL)= 0
-
绘制数据点:0.4, 1.3, 2.6, 4.0, 0.7, 5.5, 0.5
步骤 2:判断过程是否处于统计控制状态
根据 SPC 的控制图规则,判断过程是否失控需要检查以下常见异常模式:
-
任一点超出控制限(UCL 或 LCL)。
-
连续 7 点在中心线同一侧。
-
连续 7 点递增或递减。
-
其他非随机模式(如周期性波动)。
2.1 检查 I 图
-
数据点:101.2, 100.8, 102.1, 99.5, 103.5, 104.2, 98.7, 99.2
-
控制限:UCL = 106.841,LCL = 95.459
观察:
-
所有数据点均在控制限内,未超出 UCL 或 LCL。
-
数据点在中心线两侧随机波动,未出现连续 7 点在中心线同一侧或连续递增/递减的情况。
2.2 检查 MR 图
-
数据点:0.4, 1.3, 2.6, 4.0, 0.7, 5.5, 0.5
-
控制限:UCL = 6.991,LCL = 0
观察:
-
所有数据点均在控制限内,未超出 UCL 或 LCL。
-
数据点在中心线两侧随机波动,未显示明显的非随机模式。
2.3 结论
-
I 图和 MR 图均未显示异常,过程处于统计控制状态。
-
过程均值和变异性均稳定,可以进一步分析过程能力或继续监控。
步骤 3:改进措施
虽然当前数据表明过程处于统计控制状态,但为了确保长期质量稳定性并进一步优化生产过程,可以采取以下预防性改进措施:
-
评估过程能力:
- 虽然过程稳定,但需要计算过程能力指数(Cp 和 Cpk)以确保过程满足规格要求。过程标准差
σ\sigma
已估算为 1.897 Ω,可以计算:\sigma
-
Cp=USL−LSL6σ=105−956⋅1.897=1011.382=0.88\text{Cp} = \frac{\text{USL} - \text{LSL}}{6\sigma} = \frac{105 - 95}{6 \cdot 1.897} = \frac{10}{11.382} = 0.88
\text{Cp} = \frac{\text{USL} - \text{LSL}}{6\sigma} = \frac{105 - 95}{6 \cdot 1.897} = \frac{10}{11.382} = 0.88
-
Cpk=min(USL−Xˉ3σ,Xˉ−LSL3σ)=min(105−101.153⋅1.897,101.15−953⋅1.897)=min(3.855.691,6.155.691)=min(0.68,1.08)=0.68\text{Cpk} = \min\left(\frac{\text{USL} - \bar{X}}{3\sigma}, \frac{\bar{X} - \text{LSL}}{3\sigma}\right) = \min\left(\frac{105 - 101.15}{3 \cdot 1.897}, \frac{101.15 - 95}{3 \cdot 1.897}\right) = \min\left(\frac{3.85}{5.691}, \frac{6.15}{5.691}\right) = \min(0.68, 1.08) = 0.68
\text{Cpk} = \min\left(\frac{\text{USL} - \bar{X}}{3\sigma}, \frac{\bar{X} - \text{LSL}}{3\sigma}\right) = \min\left(\frac{105 - 101.15}{3 \cdot 1.897}, \frac{101.15 - 95}{3 \cdot 1.897}\right) = \min\left(\frac{3.85}{5.691}, \frac{6.15}{5.691}\right) = \min(0.68, 1.08) = 0.68
-
-
结果显示 Cp = 0.88 和 Cpk = 0.68,均小于 1.0,表明过程能力不足,无法满足规格要求。
- 虽然过程稳定,但需要计算过程能力指数(Cp 和 Cpk)以确保过程满足规格要求。过程标准差
-
减少过程变异:
- 当前过程标准差
σ=1.897\sigma = 1.897
过大,导致 Cp 和 Cpk 较低。可以通过以下措施减少变异:\sigma = 1.897
-
检查设备稳定性,实施预防性维护,减少机器波动。
-
优化原材料质量,减少批次间差异。
-
改进操作流程,减少人为误差(如加强操作员培训或引入自动化设备)。
-
- 当前过程标准差
-
调整过程均值:
- 当前过程均值
Xˉ=101.15\bar{X} = 101.15
偏离规格中心(100 Ω)。应调整工艺参数(如设备设置),将均值调整到规格中心 100 Ω。\bar{X} = 101.15
-
调整后重新收集数据并验证 Cp 和 Cpk 是否提高。
- 当前过程均值
-
增加抽样频率:
-
当前每小时只抽取 1 个样品,数据量较少,可能无法及时发现潜在问题。可以在生产条件允许的情况下,增加抽样频率(例如每半小时抽取 1 个样品),以提高控制图的敏感性。
-
-
持续监控:
-
继续使用 I-MR 控制图监控过程,确保改进措施有效且过程保持稳定。
-
如果过程能力仍无法满足要求(Cp 和 Cpk 均 ≥ 1.33),考虑更换设备或重新设计工艺。
-