3D尺寸分析和质量控制

三坐标CMM尺寸数据分析系统是对三坐标尺寸数量进行质量分析比如常见的spc分析

某工厂生产一种精密电子元件,其关键质量特性是元件的电阻值,要求电阻值的规格范围为 100 ± 5 Ω(即规格上限 USL = 105 Ω,规格下限 LSL = 95 Ω)。由于生产批量较小,每小时只能抽取 1 个样品进行测量,因此无法使用传统的 X-bar 和 R 图。工厂希望通过 SPC 控制图监控生产过程的稳定性,并及时发现异常情况。

在某一时段内,工厂收集了以下数据(单位:Ω):

小时

电阻值 (X)

1

101.2

2

100.8

3

102.1

4

99.5

5

103.5

6

104.2

7

98.7

8

99.2

请问:

  1. 如何建立个体值-移动极差(I-MR)控制图?

  2. 根据控制图判断过程是否处于统计控制状态?

  3. 如果发现异常,应采取哪些改进措施?


解决方案:

步骤 1:建立个体值-移动极差(I-MR)控制图

在 SPC 中,当样本量

n=1n = 1n = 1

时,无法计算样本平均值和样本极差,因此使用个体值-移动极差(I-MR)控制图。I 图用于监控过程均值的稳定性,MR 图用于监控过程变异性的稳定性。以下是计算控制图参数的步骤:

1.1 计算 I 图的控制限

I 图的控制限公式如下:

  • 中心线(CL):

    Xˉ=∑Xk\bar{X} = \frac{\sum X}{k}\bar{X} = \frac{\sum X}{k}

  • 上控制限(UCL):

    UCL=Xˉ+3⋅MRˉd2\text{UCL} = \bar{X} + 3 \cdot \frac{\bar{MR}}{d_2}\text{UCL} = \bar{X} + 3 \cdot \frac{\bar{MR}}{d_2}

  • 下控制限(LCL):

    LCL=Xˉ−3⋅MRˉd2\text{LCL} = \bar{X} - 3 \cdot \frac{\bar{MR}}{d_2}\text{LCL} = \bar{X} - 3 \cdot \frac{\bar{MR}}{d_2}

其中:

  • Xˉ\bar{X}\bar{X}

    是所有个体值的平均值。
  • MRˉ\bar{MR}\bar{MR}

    是移动极差的平均值,移动极差(MR)定义为连续两个个体值之间的差的绝对值:

    MRi=∣Xi−Xi−1∣MR_i = |X_i - X_{i-1}|MR_i = |X_i - X_{i-1}|

  • d2d_2d_2

    是与移动极差计算相关的常数,对于移动极差的样本大小

    n=2n = 2n = 2

    d2=1.128d_2 = 1.128d_2 = 1.128

  • (k) 是数据点数量(本例中

    k=8k = 8k = 8

    )。

计算

Xˉ\bar{X}\bar{X}

  • Xˉ=101.2+100.8+102.1+99.5+103.5+104.2+98.7+99.28=101.15\bar{X} = \frac{101.2 + 100.8 + 102.1 + 99.5 + 103.5 + 104.2 + 98.7 + 99.2}{8} = 101.15\bar{X} = \frac{101.2 + 100.8 + 102.1 + 99.5 + 103.5 + 104.2 + 98.7 + 99.2}{8} = 101.15

计算移动极差(MR)并得到

MRˉ\bar{MR}\bar{MR}

: 移动极差从第 2 个数据点开始计算:

小时

电阻值 (X)

移动极差 (MR)

1

101.2

-

2

100.8

0.4

3

102.1

1.3

4

99.5

2.6

5

103.5

4.0

6

104.2

0.7

7

98.7

5.5

8

99.2

0.5

  • MRˉ=0.4+1.3+2.6+4.0+0.7+5.5+0.57=2.14\bar{MR} = \frac{0.4 + 1.3 + 2.6 + 4.0 + 0.7 + 5.5 + 0.5}{7} = 2.14\bar{MR} = \frac{0.4 + 1.3 + 2.6 + 4.0 + 0.7 + 5.5 + 0.5}{7} = 2.14

计算 I 图的控制限:

  • 过程标准差的估计:

    σ=MRˉd2=2.141.128=1.897\sigma = \frac{\bar{MR}}{d_2} = \frac{2.14}{1.128} = 1.897\sigma = \frac{\bar{MR}}{d_2} = \frac{2.14}{1.128} = 1.897

  • UCL=Xˉ+3⋅σ=101.15+3⋅1.897=101.15+5.691=106.841\text{UCL} = \bar{X} + 3 \cdot \sigma = 101.15 + 3 \cdot 1.897 = 101.15 + 5.691 = 106.841\text{UCL} = \bar{X} + 3 \cdot \sigma = 101.15 + 3 \cdot 1.897 = 101.15 + 5.691 = 106.841

  • LCL=Xˉ−3⋅σ=101.15−3⋅1.897=101.15−5.691=95.459\text{LCL} = \bar{X} - 3 \cdot \sigma = 101.15 - 3 \cdot 1.897 = 101.15 - 5.691 = 95.459\text{LCL} = \bar{X} - 3 \cdot \sigma = 101.15 - 3 \cdot 1.897 = 101.15 - 5.691 = 95.459

1.2 计算 MR 图的控制限

MR 图的控制限公式如下:

  • 中心线(CL):

    MRˉ\bar{MR}\bar{MR}

  • 上控制限(UCL):

    UCL=D4⋅MRˉ\text{UCL} = D_4 \cdot \bar{MR}\text{UCL} = D_4 \cdot \bar{MR}

  • 下控制限(LCL):

    LCL=D3⋅MRˉ\text{LCL} = D_3 \cdot \bar{MR}\text{LCL} = D_3 \cdot \bar{MR}

其中:

  • D3D_3D_3

    D4D_4D_4

    是与移动极差计算相关的常数,对于

    n=2n = 2n = 2

    D3=0D_3 = 0D_3 = 0

    D4=3.267D_4 = 3.267D_4 = 3.267

计算 MR 图的控制限:

  • UCL=3.267⋅2.14=6.991\text{UCL} = 3.267 \cdot 2.14 = 6.991\text{UCL} = 3.267 \cdot 2.14 = 6.991

  • LCL=0⋅2.14=0\text{LCL} = 0 \cdot 2.14 = 0\text{LCL} = 0 \cdot 2.14 = 0

1.3 绘制控制图

根据计算结果,绘制 I 和 MR 控制图如下:

I 图:

  • 中心线(CL)= 101.15

  • 上控制限(UCL)= 106.841

  • 下控制限(LCL)= 95.459

  • 绘制数据点:101.2, 100.8, 102.1, 99.5, 103.5, 104.2, 98.7, 99.2

MR 图:

  • 中心线(CL)= 2.14

  • 上控制限(UCL)= 6.991

  • 下控制限(LCL)= 0

  • 绘制数据点:0.4, 1.3, 2.6, 4.0, 0.7, 5.5, 0.5

步骤 2:判断过程是否处于统计控制状态

根据 SPC 的控制图规则,判断过程是否失控需要检查以下常见异常模式:

  1. 任一点超出控制限(UCL 或 LCL)。

  2. 连续 7 点在中心线同一侧。

  3. 连续 7 点递增或递减。

  4. 其他非随机模式(如周期性波动)。

2.1 检查 I 图

  • 数据点:101.2, 100.8, 102.1, 99.5, 103.5, 104.2, 98.7, 99.2

  • 控制限:UCL = 106.841,LCL = 95.459

观察:

  • 所有数据点均在控制限内,未超出 UCL 或 LCL。

  • 数据点在中心线两侧随机波动,未出现连续 7 点在中心线同一侧或连续递增/递减的情况。

2.2 检查 MR 图

  • 数据点:0.4, 1.3, 2.6, 4.0, 0.7, 5.5, 0.5

  • 控制限:UCL = 6.991,LCL = 0

观察:

  • 所有数据点均在控制限内,未超出 UCL 或 LCL。

  • 数据点在中心线两侧随机波动,未显示明显的非随机模式。

2.3 结论

  • I 图和 MR 图均未显示异常,过程处于统计控制状态。

  • 过程均值和变异性均稳定,可以进一步分析过程能力或继续监控。

步骤 3:改进措施

虽然当前数据表明过程处于统计控制状态,但为了确保长期质量稳定性并进一步优化生产过程,可以采取以下预防性改进措施:

  1. 评估过程能力:

    • 虽然过程稳定,但需要计算过程能力指数(Cp 和 Cpk)以确保过程满足规格要求。过程标准差

      σ\sigma\sigma

      已估算为 1.897 Ω,可以计算:
      • Cp=USL−LSL6σ=105−956⋅1.897=1011.382=0.88\text{Cp} = \frac{\text{USL} - \text{LSL}}{6\sigma} = \frac{105 - 95}{6 \cdot 1.897} = \frac{10}{11.382} = 0.88\text{Cp} = \frac{\text{USL} - \text{LSL}}{6\sigma} = \frac{105 - 95}{6 \cdot 1.897} = \frac{10}{11.382} = 0.88

      • Cpk=min⁡(USL−Xˉ3σ,Xˉ−LSL3σ)=min⁡(105−101.153⋅1.897,101.15−953⋅1.897)=min⁡(3.855.691,6.155.691)=min⁡(0.68,1.08)=0.68\text{Cpk} = \min\left(\frac{\text{USL} - \bar{X}}{3\sigma}, \frac{\bar{X} - \text{LSL}}{3\sigma}\right) = \min\left(\frac{105 - 101.15}{3 \cdot 1.897}, \frac{101.15 - 95}{3 \cdot 1.897}\right) = \min\left(\frac{3.85}{5.691}, \frac{6.15}{5.691}\right) = \min(0.68, 1.08) = 0.68\text{Cpk} = \min\left(\frac{\text{USL} - \bar{X}}{3\sigma}, \frac{\bar{X} - \text{LSL}}{3\sigma}\right) = \min\left(\frac{105 - 101.15}{3 \cdot 1.897}, \frac{101.15 - 95}{3 \cdot 1.897}\right) = \min\left(\frac{3.85}{5.691}, \frac{6.15}{5.691}\right) = \min(0.68, 1.08) = 0.68

    • 结果显示 Cp = 0.88 和 Cpk = 0.68,均小于 1.0,表明过程能力不足,无法满足规格要求。

  2. 减少过程变异:

    • 当前过程标准差

      σ=1.897\sigma = 1.897\sigma = 1.897

      过大,导致 Cp 和 Cpk 较低。可以通过以下措施减少变异:
      • 检查设备稳定性,实施预防性维护,减少机器波动。

      • 优化原材料质量,减少批次间差异。

      • 改进操作流程,减少人为误差(如加强操作员培训或引入自动化设备)。

  3. 调整过程均值:

    • 当前过程均值

      Xˉ=101.15\bar{X} = 101.15\bar{X} = 101.15

      偏离规格中心(100 Ω)。应调整工艺参数(如设备设置),将均值调整到规格中心 100 Ω。
    • 调整后重新收集数据并验证 Cp 和 Cpk 是否提高。

  4. 增加抽样频率:

    • 当前每小时只抽取 1 个样品,数据量较少,可能无法及时发现潜在问题。可以在生产条件允许的情况下,增加抽样频率(例如每半小时抽取 1 个样品),以提高控制图的敏感性。

  5. 持续监控:

    • 继续使用 I-MR 控制图监控过程,确保改进措施有效且过程保持稳定。

    • 如果过程能力仍无法满足要求(Cp 和 Cpk 均 ≥ 1.33),考虑更换设备或重新设计工艺。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值