三坐标CMM尺寸数据分析系统

三坐标CMM尺寸数据分析系统是对三坐标尺寸数量进行质量分析比如常见的spc分析

某工厂生产一种金属零件,其关键质量特性是零件的直径,要求直径的规格范围为 50 ± 0.5 mm(即规格上限 USL = 50.5 mm,规格下限 LSL = 49.5 mm)。生产过程中,每小时抽取 5 个样品进行测量,并记录其平均值和极差(即最大值与最小值的差)。工厂希望通过 SPC 控制图来监控生产过程的稳定性,并及时发现异常情况。

在某一时段内,工厂收集了以下数据(单位:mm):

小时

样品1

样品2

样品3

样品4

样品5

平均值 (X-bar)

极差 (R)

1

50.1

50.2

50.0

50.3

50.1

50.14

0.3

2

50.0

49.9

50.2

50.1

50.0

50.04

0.3

3

50.2

50.3

50.1

50.4

50.2

50.24

0.3

4

49.8

49.9

50.0

50.1

49.7

49.90

0.4

5

50.5

50.6

50.4

50.7

50.5

50.54

0.3

请问:

  1. 如何建立 X-bar 和 R 控制图?

  2. 根据控制图判断过程是否处于统计控制状态?

  3. 如果发现异常,应采取哪些改进措施?


解决方案:

步骤 1:建立 X-bar 和 R 控制图

在 SPC 中,X-bar 图用于监控过程均值的稳定性,R 图用于监控过程变异性的稳定性。以下是计算控制图参数的步骤:

1.1 计算 X-bar 图的控制限

X-bar 图的控制限公式如下:

  • 中心线(CL):

    Xˉˉ=∑Xˉk\bar{\bar{X}} = \frac{\sum \bar{X}}{k}\bar{\bar{X}} = \frac{\sum \bar{X}}{k}

  • 上控制限(UCL):

    UCL=Xˉˉ+A2⋅Rˉ\text{UCL} = \bar{\bar{X}} + A_2 \cdot \bar{R}\text{UCL} = \bar{\bar{X}} + A_2 \cdot \bar{R}

  • 下控制限(LCL):

    LCL=Xˉˉ−A2⋅Rˉ\text{LCL} = \bar{\bar{X}} - A_2 \cdot \bar{R}\text{LCL} = \bar{\bar{X}} - A_2 \cdot \bar{R}

其中:

  • Xˉˉ\bar{\bar{X}}\bar{\bar{X}}

    是所有样本平均值的平均值。
  • Rˉ\bar{R}\bar{R}

    是所有样本极差的平均值。
  • A2A_2A_2

    是与样本大小 (n) 相关的常数,查表可得。对于

    n=5n = 5n = 5

    A2=0.577A_2 = 0.577A_2 = 0.577

  • (k) 是样本组数(本例中

    k=5k = 5k = 5

    )。

根据数据:

  • Xˉˉ=50.14+50.04+50.24+49.90+50.545=50.172\bar{\bar{X}} = \frac{50.14 + 50.04 + 50.24 + 49.90 + 50.54}{5} = 50.172\bar{\bar{X}} = \frac{50.14 + 50.04 + 50.24 + 49.90 + 50.54}{5} = 50.172

  • Rˉ=0.3+0.3+0.3+0.4+0.35=0.32\bar{R} = \frac{0.3 + 0.3 + 0.3 + 0.4 + 0.3}{5} = 0.32\bar{R} = \frac{0.3 + 0.3 + 0.3 + 0.4 + 0.3}{5} = 0.32

计算 X-bar 图的控制限:

  • UCL=50.172+0.577⋅0.32=50.172+0.185=50.357\text{UCL} = 50.172 + 0.577 \cdot 0.32 = 50.172 + 0.185 = 50.357\text{UCL} = 50.172 + 0.577 \cdot 0.32 = 50.172 + 0.185 = 50.357

  • LCL=50.172−0.577⋅0.32=50.172−0.185=49.987\text{LCL} = 50.172 - 0.577 \cdot 0.32 = 50.172 - 0.185 = 49.987\text{LCL} = 50.172 - 0.577 \cdot 0.32 = 50.172 - 0.185 = 49.987

1.2 计算 R 图的控制限

R 图的控制限公式如下:

  • 中心线(CL):

    Rˉ\bar{R}\bar{R}

  • 上控制限(UCL):

    UCL=D4⋅Rˉ\text{UCL} = D_4 \cdot \bar{R}\text{UCL} = D_4 \cdot \bar{R}

  • 下控制限(LCL):

    LCL=D3⋅Rˉ\text{LCL} = D_3 \cdot \bar{R}\text{LCL} = D_3 \cdot \bar{R}

其中:

  • D3D_3D_3

    D4D_4D_4

    是与样本大小 (n) 相关的常数,查表可得。对于

    n=5n = 5n = 5

    D3=0D_3 = 0D_3 = 0

    D4=2.114D_4 = 2.114D_4 = 2.114

计算 R 图的控制限:

  • UCL=2.114⋅0.32=0.676\text{UCL} = 2.114 \cdot 0.32 = 0.676\text{UCL} = 2.114 \cdot 0.32 = 0.676

  • LCL=0⋅0.32=0\text{LCL} = 0 \cdot 0.32 = 0\text{LCL} = 0 \cdot 0.32 = 0

1.3 绘制控制图

根据计算结果,绘制 X-bar 和 R 控制图如下:

X-bar 图:

  • 中心线(CL)= 50.172

  • 上控制限(UCL)= 50.357

  • 下控制限(LCL)= 49.987

  • 绘制数据点:50.14, 50.04, 50.24, 49.90, 50.54

R 图:

  • 中心线(CL)= 0.32

  • 上控制限(UCL)= 0.676

  • 下控制限(LCL)= 0

  • 绘制数据点:0.3, 0.3, 0.3, 0.4, 0.3

步骤 2:判断过程是否处于统计控制状态

根据 SPC 的控制图规则,判断过程是否失控需要检查以下常见异常模式:

  1. 任一点超出控制限(UCL 或 LCL)。

  2. 连续 7 点在中心线同一侧。

  3. 连续 7 点递增或递减。

  4. 其他非随机模式(如周期性波动)。

2.1 检查 X-bar 图

  • 数据点:50.14, 50.04, 50.24, 49.90, 50.54

  • 控制限:UCL = 50.357,LCL = 49.987

观察:

  • 第 5 个数据点(50.54)超出了 UCL(50.357),表明过程均值发生了异常偏移。

2.2 检查 R 图

  • 数据点:0.3, 0.3, 0.3, 0.4, 0.3

  • 控制限:UCL = 0.676,LCL = 0

观察:

  • 所有数据点均在控制限内,表明过程变异性是稳定的。

2.3 结论

  • X-bar 图显示过程均值失控(第 5 个数据点超出 UCL),但 R 图显示过程变异性是稳定的。

  • 这表明问题可能出在过程均值的系统性偏移,而不是随机波动。

步骤 3:改进措施

根据分析结果,可以采取以下措施:

  1. 调查异常原因:

    • 检查第 5 小时的生产条件,可能的原因包括:

      • 设备调整不当(如机床偏移)。

      • 原材料批次变化。

      • 操作员失误(如测量误差或工艺参数设置错误)。

    • 使用因果图(鱼骨图)或 5W1H 方法分析根本原因。

  2. 采取纠正措施:

    • 如果发现设备问题,重新校准设备。

    • 如果发现原材料问题,检查供应商质量或更换批次。

    • 如果发现操作员问题,加强培训或优化操作流程。

  3. 持续监控:

    • 在纠正后,继续收集数据并更新控制图,确保过程恢复到稳定状态。

    • 如果失控情况反复发生,考虑重新评估工艺能力(Cp 和 Cpk),以确定是否需要改进设备或工艺设计。

  4. 预防措施:

    • 引入预防性维护计划,定期检查设备。

    • 实施操作员标准化作业指导书(SOP),减少人为误差。

    • 考虑引入自动化检测系统,减少测量误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值