三坐标CMM尺寸数据分析系统是对三坐标尺寸数量进行质量分析比如常见的spc分析
某工厂生产一种金属零件,其关键质量特性是零件的直径,要求直径的规格范围为 50 ± 0.5 mm(即规格上限 USL = 50.5 mm,规格下限 LSL = 49.5 mm)。生产过程中,每小时抽取 5 个样品进行测量,并记录其平均值和极差(即最大值与最小值的差)。工厂希望通过 SPC 控制图来监控生产过程的稳定性,并及时发现异常情况。
在某一时段内,工厂收集了以下数据(单位:mm):
小时 | 样品1 | 样品2 | 样品3 | 样品4 | 样品5 | 平均值 (X-bar) | 极差 (R) |
---|---|---|---|---|---|---|---|
1 | 50.1 | 50.2 | 50.0 | 50.3 | 50.1 | 50.14 | 0.3 |
2 | 50.0 | 49.9 | 50.2 | 50.1 | 50.0 | 50.04 | 0.3 |
3 | 50.2 | 50.3 | 50.1 | 50.4 | 50.2 | 50.24 | 0.3 |
4 | 49.8 | 49.9 | 50.0 | 50.1 | 49.7 | 49.90 | 0.4 |
5 | 50.5 | 50.6 | 50.4 | 50.7 | 50.5 | 50.54 | 0.3 |
请问:
-
如何建立 X-bar 和 R 控制图?
-
根据控制图判断过程是否处于统计控制状态?
-
如果发现异常,应采取哪些改进措施?
解决方案:
步骤 1:建立 X-bar 和 R 控制图
在 SPC 中,X-bar 图用于监控过程均值的稳定性,R 图用于监控过程变异性的稳定性。以下是计算控制图参数的步骤:
1.1 计算 X-bar 图的控制限
X-bar 图的控制限公式如下:
- 中心线(CL):
Xˉˉ=∑Xˉk\bar{\bar{X}} = \frac{\sum \bar{X}}{k}
\bar{\bar{X}} = \frac{\sum \bar{X}}{k}
- 上控制限(UCL):
UCL=Xˉˉ+A2⋅Rˉ\text{UCL} = \bar{\bar{X}} + A_2 \cdot \bar{R}
\text{UCL} = \bar{\bar{X}} + A_2 \cdot \bar{R}
- 下控制限(LCL):
LCL=Xˉˉ−A2⋅Rˉ\text{LCL} = \bar{\bar{X}} - A_2 \cdot \bar{R}
\text{LCL} = \bar{\bar{X}} - A_2 \cdot \bar{R}
其中:
-
Xˉˉ\bar{\bar{X}}
是所有样本平均值的平均值。\bar{\bar{X}}
-
Rˉ\bar{R}
是所有样本极差的平均值。\bar{R}
-
A2A_2
是与样本大小 (n) 相关的常数,查表可得。对于A_2
n=5n = 5
,n = 5
A2=0.577A_2 = 0.577
。A_2 = 0.577
- (k) 是样本组数(本例中
k=5k = 5
)。k = 5
根据数据:
-
Xˉˉ=50.14+50.04+50.24+49.90+50.545=50.172\bar{\bar{X}} = \frac{50.14 + 50.04 + 50.24 + 49.90 + 50.54}{5} = 50.172
\bar{\bar{X}} = \frac{50.14 + 50.04 + 50.24 + 49.90 + 50.54}{5} = 50.172
-
Rˉ=0.3+0.3+0.3+0.4+0.35=0.32\bar{R} = \frac{0.3 + 0.3 + 0.3 + 0.4 + 0.3}{5} = 0.32
\bar{R} = \frac{0.3 + 0.3 + 0.3 + 0.4 + 0.3}{5} = 0.32
计算 X-bar 图的控制限:
-
UCL=50.172+0.577⋅0.32=50.172+0.185=50.357\text{UCL} = 50.172 + 0.577 \cdot 0.32 = 50.172 + 0.185 = 50.357
\text{UCL} = 50.172 + 0.577 \cdot 0.32 = 50.172 + 0.185 = 50.357
-
LCL=50.172−0.577⋅0.32=50.172−0.185=49.987\text{LCL} = 50.172 - 0.577 \cdot 0.32 = 50.172 - 0.185 = 49.987
\text{LCL} = 50.172 - 0.577 \cdot 0.32 = 50.172 - 0.185 = 49.987
1.2 计算 R 图的控制限
R 图的控制限公式如下:
- 中心线(CL):
Rˉ\bar{R}
\bar{R}
- 上控制限(UCL):
UCL=D4⋅Rˉ\text{UCL} = D_4 \cdot \bar{R}
\text{UCL} = D_4 \cdot \bar{R}
- 下控制限(LCL):
LCL=D3⋅Rˉ\text{LCL} = D_3 \cdot \bar{R}
\text{LCL} = D_3 \cdot \bar{R}
其中:
-
D3D_3
和D_3
D4D_4
是与样本大小 (n) 相关的常数,查表可得。对于D_4
n=5n = 5
,n = 5
D3=0D_3 = 0
,D_3 = 0
D4=2.114D_4 = 2.114
。D_4 = 2.114
计算 R 图的控制限:
-
UCL=2.114⋅0.32=0.676\text{UCL} = 2.114 \cdot 0.32 = 0.676
\text{UCL} = 2.114 \cdot 0.32 = 0.676
-
LCL=0⋅0.32=0\text{LCL} = 0 \cdot 0.32 = 0
\text{LCL} = 0 \cdot 0.32 = 0
1.3 绘制控制图
根据计算结果,绘制 X-bar 和 R 控制图如下:
X-bar 图:
-
中心线(CL)= 50.172
-
上控制限(UCL)= 50.357
-
下控制限(LCL)= 49.987
-
绘制数据点:50.14, 50.04, 50.24, 49.90, 50.54
R 图:
-
中心线(CL)= 0.32
-
上控制限(UCL)= 0.676
-
下控制限(LCL)= 0
-
绘制数据点:0.3, 0.3, 0.3, 0.4, 0.3
步骤 2:判断过程是否处于统计控制状态
根据 SPC 的控制图规则,判断过程是否失控需要检查以下常见异常模式:
-
任一点超出控制限(UCL 或 LCL)。
-
连续 7 点在中心线同一侧。
-
连续 7 点递增或递减。
-
其他非随机模式(如周期性波动)。
2.1 检查 X-bar 图
-
数据点:50.14, 50.04, 50.24, 49.90, 50.54
-
控制限:UCL = 50.357,LCL = 49.987
观察:
-
第 5 个数据点(50.54)超出了 UCL(50.357),表明过程均值发生了异常偏移。
2.2 检查 R 图
-
数据点:0.3, 0.3, 0.3, 0.4, 0.3
-
控制限:UCL = 0.676,LCL = 0
观察:
-
所有数据点均在控制限内,表明过程变异性是稳定的。
2.3 结论
-
X-bar 图显示过程均值失控(第 5 个数据点超出 UCL),但 R 图显示过程变异性是稳定的。
-
这表明问题可能出在过程均值的系统性偏移,而不是随机波动。
步骤 3:改进措施
根据分析结果,可以采取以下措施:
-
调查异常原因:
-
检查第 5 小时的生产条件,可能的原因包括:
-
设备调整不当(如机床偏移)。
-
原材料批次变化。
-
操作员失误(如测量误差或工艺参数设置错误)。
-
-
使用因果图(鱼骨图)或 5W1H 方法分析根本原因。
-
-
采取纠正措施:
-
如果发现设备问题,重新校准设备。
-
如果发现原材料问题,检查供应商质量或更换批次。
-
如果发现操作员问题,加强培训或优化操作流程。
-
-
持续监控:
-
在纠正后,继续收集数据并更新控制图,确保过程恢复到稳定状态。
-
如果失控情况反复发生,考虑重新评估工艺能力(Cp 和 Cpk),以确定是否需要改进设备或工艺设计。
-
-
预防措施:
-
引入预防性维护计划,定期检查设备。
-
实施操作员标准化作业指导书(SOP),减少人为误差。
-
考虑引入自动化检测系统,减少测量误差。
-