Matlab和Carsim 联合仿真
智能车相关,路径规划,循迹控制,辅助驾驶功能
整车相关,电车EV算法模型,混动HEV算法模型,VCU算法,HCU算法
文章目录
关于Matlab与CarSim联合仿真的一些示例代码,主要涉及智能车路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型的实现。
1. 路径规划与循迹控制
以下代码展示了如何使用Matlab生成路径,并通过CarSim进行车辆循迹控制仿真。
路径规划(基于多项式拟合)
% 路径规划:生成一个简单的三次多项式路径
clc; clear;
% 定义路径点
x = [0, 10, 20, 30, 40];
y = [0, 5, 8, 12, 15];
% 使用三次多项式拟合路径
p = polyfit(x, y, 3); % 拟合三次多项式
x_fit = linspace(0, 40, 100);
y_fit = polyval(p, x_fit);
% 绘制路径
figure;
plot(x, y, 'o', 'MarkerSize', 8, 'LineWidth', 1.5);
hold on;
plot(x_fit, y_fit, '-r', 'LineWidth', 2);
xlabel('X (m)');
ylabel('Y (m)');
title('Path Planning');
legend('Original Points', 'Fitted Path');
grid on;
% 导出路径数据到CarSim
path_data = [x_fit', y_fit'];
writematrix(path_data, 'path_data.csv'); % 保存路径为CSV文件
disp('Path data exported to path_data.csv');
循迹控制(PID控制器)
% PID控制器实现循迹控制
function control_signal = pid_controller(error, dt)
persistent prev_error integral;
if isempty(prev_error)
prev_error = 0;
integral = 0;
end
Kp = 1.0; % 比例增益
Ki = 0.1; % 积分增益
Kd = 0.05; % 微分增益
integral = integral + error * dt;
derivative = (error - prev_error) / dt;
control_signal = Kp * error + Ki * integral + Kd * derivative;
prev_error = error;
end
在CarSim中,可以将上述路径数据导入,并结合PID控制器实现循迹控制。
2. 辅助驾驶功能
以下是一个简单的自适应巡航控制(ACC)算法的实现。
自适应巡航控制(ACC)
% 自适应巡航控制(ACC)算法
function throttle_command = acc_algorithm(target_speed, current_speed, distance_to_lead_vehicle, dt)
% 参数设置
Kp_speed = 0.5; % 速度误差比例增益
Kp_distance = 0.2; % 距离误差比例增益
min_safe_distance = 10; % 最小安全距离(米)
% 计算速度误差
speed_error = target_speed - current_speed;
% 计算距离误差
distance_error = distance_to_lead_vehicle - min_safe_distance;
% 控制信号计算
throttle_command = Kp_speed * speed_error + Kp_distance * distance_error;
% 饱和限制
throttle_command = max(0, min(1, throttle_command)); % 油门范围[0, 1]
end
3. 整车相关:电车(EV)和混动(HEV)算法模型
电车(EV)能量管理算法
% 纯电动车(EV)能量管理算法
function [motor_torque, battery_power] = ev_energy_management(vehicle_speed, acceleration, battery_soc)
% 参数设置
motor_efficiency = 0.9; % 电机效率
battery_capacity = 50; % 电池容量(kWh)
max_battery_power = 100; % 最大电池功率(kW)
% 计算需求功率
demand_power = vehicle_speed * acceleration * 1.5; % 假设功率需求公式
% 电池输出功率限制
battery_power = min(max_battery_power, demand_power / motor_efficiency);
battery_power = max(-max_battery_power, battery_power); % 允许能量回收
% 计算电机扭矩
motor_torque = battery_power * motor_efficiency / vehicle_speed;
% 更新SOC
battery_soc = battery_soc - battery_power * 0.1 / battery_capacity; % 假设时间步长为0.1小时
battery_soc = max(0, min(1, battery_soc)); % SOC范围[0, 1]
disp(['Battery SOC: ', num2str(battery_soc)]);
end
混动车(HEV)能量管理算法
% 混合动力车(HEV)能量管理算法
function [engine_power, motor_power, battery_soc] = hev_energy_management(vehicle_speed, acceleration, battery_soc)
% 参数设置
engine_efficiency = 0.3; % 发动机效率
motor_efficiency = 0.9; % 电机效率
battery_capacity = 10; % 电池容量(kWh)
max_battery_power = 50; % 最大电池功率(kW)
% 计算需求功率
demand_power = vehicle_speed * acceleration * 2; % 假设功率需求公式
% 分配发动机和电机功率
if battery_soc > 0.5 % 优先使用电池
motor_power = min(demand_power, max_battery_power);
engine_power = max(0, demand_power - motor_power);
else % 优先使用发动机
engine_power = min(demand_power, 50); % 假设发动机最大功率为50kW
motor_power = max(0, demand_power - engine_power);
end
% 计算电池SOC变化
battery_power = motor_power / motor_efficiency;
battery_soc = battery_soc - battery_power * 0.1 / battery_capacity; % 假设时间步长为0.1小时
battery_soc = max(0, min(1, battery_soc)); % SOC范围[0, 1]
disp(['Battery SOC: ', num2str(battery_soc)]);
end
4. 整车控制单元(VCU/HCU)算法
以下是一个简单的整车控制单元(VCU)逻辑,用于协调发动机、电机和电池的工作。
整车控制单元(VCU)
% 整车控制单元(VCU)逻辑
function [engine_torque, motor_torque] = vcu_control(vehicle_speed, acceleration, battery_soc)
% 参数设置
engine_max_torque = 200; % 发动机最大扭矩(Nm)
motor_max_torque = 300; % 电机最大扭矩(Nm)
% 计算需求扭矩
demand_torque = vehicle_speed * acceleration * 10; % 假设扭矩需求公式
% 分配发动机和电机扭矩
if battery_soc > 0.6 % 优先使用电机
motor_torque = min(demand_torque, motor_max_torque);
engine_torque = max(0, demand_torque - motor_torque);
else % 优先使用发动机
engine_torque = min(demand_torque, engine_max_torque);
motor_torque = max(0, demand_torque - engine_torque);
end
disp(['Engine Torque: ', num2str(engine_torque), ' Nm']);
disp(['Motor Torque: ', num2str(motor_torque), ' Nm']);
end
总结
Matlab与CarSim联合仿真的基础框架,涵盖了路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型。你可以根据具体需求对这些代码进行扩展和优化,并将其集成到CarSim中进行联合仿真。
这是一条设计用于测试车辆性能的赛道,赛道上有一些障碍物和转弯。为了实现路径规划、循迹控制以及辅助驾驶功能,并且将这些功能与CarSim联合仿真,我们可以使用Matlab编写相应的代码。以下是一个示例代码,包括路径规划、PID控制器实现循迹控制,以及一个简单的自适应巡航控制(ACC)算法。
1. 路径规划
首先,我们需要定义赛道上的关键点,并通过多项式拟合生成一条平滑的路径。
% 路径规划:生成一个简单的三次多项式路径
clc; clear;
% 定义路径点
x = [0, 10, 20, 30, 40];
y = [0, 5, 8, 12, 15];
% 使用三次多项式拟合路径
p = polyfit(x, y, 3); % 拟合三次多项式
x_fit = linspace(0, 40, 100);
y_fit = polyval(p, x_fit);
% 绘制路径
figure;
plot(x, y, 'o', 'MarkerSize', 8, 'LineWidth', 1.5);
hold on;
plot(x_fit, y_fit, '-r', 'LineWidth', 2);
xlabel('X (m)');
ylabel('Y (m)');
title('Path Planning');
legend('Original Points', 'Fitted Path');
grid on;
% 导出路径数据到CarSim
path_data = [x_fit', y_fit'];
writematrix(path_data, 'path_data.csv'); % 保存路径为CSV文件
disp('Path data exported to path_data.csv');
2. PID控制器实现循迹控制
接下来,我们实现一个PID控制器来控制车辆沿着规划的路径行驶。
% PID控制器实现循迹控制
function control_signal = pid_controller(error, dt)
persistent prev_error integral;
if isempty(prev_error)
prev_error = 0;
integral = 0;
end
Kp = 1.0; % 比例增益
Ki = 0.1; % 积分增益
Kd = 0.05; % 微分增益
integral = integral + error * dt;
derivative = (error - prev_error) / dt;
control_signal = Kp * error + Ki * integral + Kd * derivative;
prev_error = error;
end
3. 自适应巡航控制(ACC)
最后,我们实现一个简单的自适应巡航控制(ACC)算法。
% 自适应巡航控制(ACC)算法
function throttle_command = acc_algorithm(target_speed, current_speed, distance_to_lead_vehicle, dt)
% 参数设置
Kp_speed = 0.5; % 速度误差比例增益
Kp_distance = 0.2; % 距离误差比例增益
min_safe_distance = 10; % 最小安全距离(米)
% 计算速度误差
speed_error = target_speed - current_speed;
% 计算距离误差
distance_error = distance_to_lead_vehicle - min_safe_distance;
% 控制信号计算
throttle_command = Kp_speed * speed_error + Kp_distance * distance_error;
% 饱和限制
throttle_command = max(0, min(1, throttle_command)); % 油门范围[0, 1]
end
4. 整车控制单元(VCU/HCU)算法
以下是整车控制单元(VCU)逻辑,用于协调发动机、电机和电池的工作。
% 整车控制单元(VCU)逻辑
function [engine_torque, motor_torque] = vcu_control(vehicle_speed, acceleration, battery_soc)
% 参数设置
engine_max_torque = 200; % 发动机最大扭矩(Nm)
motor_max_torque = 300; % 电机最大扭矩(Nm)
% 计算需求扭矩
demand_torque = vehicle_speed * acceleration * 10; % 假设扭矩需求公式
% 分配发动机和电机扭矩
if battery_soc > 0.6 % 优先使用电机
motor_torque = min(demand_torque, motor_max_torque);
engine_torque = max(0, demand_torque - motor_torque);
else % 优先使用发动机
engine_torque = min(demand_torque, engine_max_torque);
motor_torque = max(0, demand_torque - engine_torque);
end
disp(['Engine Torque: ', num2str(engine_torque), ' Nm']);
disp(['Motor Torque: ', num2str(motor_torque), ' Nm']);
end
总结
Matlab与CarSim联合仿真的基础框架,涵盖了路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型。你可以根据具体需求对这些代码进行扩展和优化,并将其集成到CarSim中进行联合仿真。