Matlab和Carsim 联合仿真 智能车相关,路径规划,循迹控制,辅助驾驶功能

Matlab和Carsim 联合仿真

智能车相关,路径规划,循迹控制,辅助驾驶功能

整车相关,电车EV算法模型,混动HEV算法模型,VCU算法,HCU算法
在这里插入图片描述


关于Matlab与CarSim联合仿真的一些示例代码,主要涉及智能车路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型的实现。


1. 路径规划与循迹控制

以下代码展示了如何使用Matlab生成路径,并通过CarSim进行车辆循迹控制仿真。

路径规划(基于多项式拟合)
% 路径规划:生成一个简单的三次多项式路径
clc; clear;

% 定义路径点
x = [0, 10, 20, 30, 40];
y = [0, 5, 8, 12, 15];

% 使用三次多项式拟合路径
p = polyfit(x, y, 3); % 拟合三次多项式
x_fit = linspace(0, 40, 100);
y_fit = polyval(p, x_fit);

% 绘制路径
figure;
plot(x, y, 'o', 'MarkerSize', 8, 'LineWidth', 1.5);
hold on;
plot(x_fit, y_fit, '-r', 'LineWidth', 2);
xlabel('X (m)');
ylabel('Y (m)');
title('Path Planning');
legend('Original Points', 'Fitted Path');
grid on;

% 导出路径数据到CarSim
path_data = [x_fit', y_fit'];
writematrix(path_data, 'path_data.csv'); % 保存路径为CSV文件
disp('Path data exported to path_data.csv');
循迹控制(PID控制器)
% PID控制器实现循迹控制
function control_signal = pid_controller(error, dt)
    persistent prev_error integral;
    if isempty(prev_error)
        prev_error = 0;
        integral = 0;
    end

    Kp = 1.0; % 比例增益
    Ki = 0.1; % 积分增益
    Kd = 0.05; % 微分增益

    integral = integral + error * dt;
    derivative = (error - prev_error) / dt;
    control_signal = Kp * error + Ki * integral + Kd * derivative;
    prev_error = error;
end

在CarSim中,可以将上述路径数据导入,并结合PID控制器实现循迹控制。


2. 辅助驾驶功能

以下是一个简单的自适应巡航控制(ACC)算法的实现。

自适应巡航控制(ACC)
% 自适应巡航控制(ACC)算法
function throttle_command = acc_algorithm(target_speed, current_speed, distance_to_lead_vehicle, dt)
    % 参数设置
    Kp_speed = 0.5; % 速度误差比例增益
    Kp_distance = 0.2; % 距离误差比例增益
    min_safe_distance = 10; % 最小安全距离(米)

    % 计算速度误差
    speed_error = target_speed - current_speed;

    % 计算距离误差
    distance_error = distance_to_lead_vehicle - min_safe_distance;

    % 控制信号计算
    throttle_command = Kp_speed * speed_error + Kp_distance * distance_error;

    % 饱和限制
    throttle_command = max(0, min(1, throttle_command)); % 油门范围[0, 1]
end

3. 整车相关:电车(EV)和混动(HEV)算法模型

电车(EV)能量管理算法
% 纯电动车(EV)能量管理算法
function [motor_torque, battery_power] = ev_energy_management(vehicle_speed, acceleration, battery_soc)
    % 参数设置
    motor_efficiency = 0.9; % 电机效率
    battery_capacity = 50; % 电池容量(kWh)
    max_battery_power = 100; % 最大电池功率(kW)

    % 计算需求功率
    demand_power = vehicle_speed * acceleration * 1.5; % 假设功率需求公式

    % 电池输出功率限制
    battery_power = min(max_battery_power, demand_power / motor_efficiency);
    battery_power = max(-max_battery_power, battery_power); % 允许能量回收

    % 计算电机扭矩
    motor_torque = battery_power * motor_efficiency / vehicle_speed;

    % 更新SOC
    battery_soc = battery_soc - battery_power * 0.1 / battery_capacity; % 假设时间步长为0.1小时
    battery_soc = max(0, min(1, battery_soc)); % SOC范围[0, 1]

    disp(['Battery SOC: ', num2str(battery_soc)]);
end
混动车(HEV)能量管理算法
% 混合动力车(HEV)能量管理算法
function [engine_power, motor_power, battery_soc] = hev_energy_management(vehicle_speed, acceleration, battery_soc)
    % 参数设置
    engine_efficiency = 0.3; % 发动机效率
    motor_efficiency = 0.9; % 电机效率
    battery_capacity = 10; % 电池容量(kWh)
    max_battery_power = 50; % 最大电池功率(kW)

    % 计算需求功率
    demand_power = vehicle_speed * acceleration * 2; % 假设功率需求公式

    % 分配发动机和电机功率
    if battery_soc > 0.5 % 优先使用电池
        motor_power = min(demand_power, max_battery_power);
        engine_power = max(0, demand_power - motor_power);
    else % 优先使用发动机
        engine_power = min(demand_power, 50); % 假设发动机最大功率为50kW
        motor_power = max(0, demand_power - engine_power);
    end

    % 计算电池SOC变化
    battery_power = motor_power / motor_efficiency;
    battery_soc = battery_soc - battery_power * 0.1 / battery_capacity; % 假设时间步长为0.1小时
    battery_soc = max(0, min(1, battery_soc)); % SOC范围[0, 1]

    disp(['Battery SOC: ', num2str(battery_soc)]);
end

4. 整车控制单元(VCU/HCU)算法

以下是一个简单的整车控制单元(VCU)逻辑,用于协调发动机、电机和电池的工作。

整车控制单元(VCU)
% 整车控制单元(VCU)逻辑
function [engine_torque, motor_torque] = vcu_control(vehicle_speed, acceleration, battery_soc)
    % 参数设置
    engine_max_torque = 200; % 发动机最大扭矩(Nm)
    motor_max_torque = 300; % 电机最大扭矩(Nm)

    % 计算需求扭矩
    demand_torque = vehicle_speed * acceleration * 10; % 假设扭矩需求公式

    % 分配发动机和电机扭矩
    if battery_soc > 0.6 % 优先使用电机
        motor_torque = min(demand_torque, motor_max_torque);
        engine_torque = max(0, demand_torque - motor_torque);
    else % 优先使用发动机
        engine_torque = min(demand_torque, engine_max_torque);
        motor_torque = max(0, demand_torque - engine_torque);
    end

    disp(['Engine Torque: ', num2str(engine_torque), ' Nm']);
    disp(['Motor Torque: ', num2str(motor_torque), ' Nm']);
end

总结

Matlab与CarSim联合仿真的基础框架,涵盖了路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型。你可以根据具体需求对这些代码进行扩展和优化,并将其集成到CarSim中进行联合仿真。
在这里插入图片描述
这是一条设计用于测试车辆性能的赛道,赛道上有一些障碍物和转弯。为了实现路径规划、循迹控制以及辅助驾驶功能,并且将这些功能与CarSim联合仿真,我们可以使用Matlab编写相应的代码。以下是一个示例代码,包括路径规划、PID控制器实现循迹控制,以及一个简单的自适应巡航控制(ACC)算法。

1. 路径规划

首先,我们需要定义赛道上的关键点,并通过多项式拟合生成一条平滑的路径。

% 路径规划:生成一个简单的三次多项式路径
clc; clear;

% 定义路径点
x = [0, 10, 20, 30, 40];
y = [0, 5, 8, 12, 15];

% 使用三次多项式拟合路径
p = polyfit(x, y, 3); % 拟合三次多项式
x_fit = linspace(0, 40, 100);
y_fit = polyval(p, x_fit);

% 绘制路径
figure;
plot(x, y, 'o', 'MarkerSize', 8, 'LineWidth', 1.5);
hold on;
plot(x_fit, y_fit, '-r', 'LineWidth', 2);
xlabel('X (m)');
ylabel('Y (m)');
title('Path Planning');
legend('Original Points', 'Fitted Path');
grid on;

% 导出路径数据到CarSim
path_data = [x_fit', y_fit'];
writematrix(path_data, 'path_data.csv'); % 保存路径为CSV文件
disp('Path data exported to path_data.csv');

2. PID控制器实现循迹控制

接下来,我们实现一个PID控制器来控制车辆沿着规划的路径行驶。

% PID控制器实现循迹控制
function control_signal = pid_controller(error, dt)
    persistent prev_error integral;
    if isempty(prev_error)
        prev_error = 0;
        integral = 0;
    end

    Kp = 1.0; % 比例增益
    Ki = 0.1; % 积分增益
    Kd = 0.05; % 微分增益

    integral = integral + error * dt;
    derivative = (error - prev_error) / dt;
    control_signal = Kp * error + Ki * integral + Kd * derivative;
    prev_error = error;
end

3. 自适应巡航控制(ACC)

最后,我们实现一个简单的自适应巡航控制(ACC)算法。

% 自适应巡航控制(ACC)算法
function throttle_command = acc_algorithm(target_speed, current_speed, distance_to_lead_vehicle, dt)
    % 参数设置
    Kp_speed = 0.5; % 速度误差比例增益
    Kp_distance = 0.2; % 距离误差比例增益
    min_safe_distance = 10; % 最小安全距离(米)

    % 计算速度误差
    speed_error = target_speed - current_speed;

    % 计算距离误差
    distance_error = distance_to_lead_vehicle - min_safe_distance;

    % 控制信号计算
    throttle_command = Kp_speed * speed_error + Kp_distance * distance_error;

    % 饱和限制
    throttle_command = max(0, min(1, throttle_command)); % 油门范围[0, 1]
end

4. 整车控制单元(VCU/HCU)算法

以下是整车控制单元(VCU)逻辑,用于协调发动机、电机和电池的工作。

% 整车控制单元(VCU)逻辑
function [engine_torque, motor_torque] = vcu_control(vehicle_speed, acceleration, battery_soc)
    % 参数设置
    engine_max_torque = 200; % 发动机最大扭矩(Nm)
    motor_max_torque = 300; % 电机最大扭矩(Nm)

    % 计算需求扭矩
    demand_torque = vehicle_speed * acceleration * 10; % 假设扭矩需求公式

    % 分配发动机和电机扭矩
    if battery_soc > 0.6 % 优先使用电机
        motor_torque = min(demand_torque, motor_max_torque);
        engine_torque = max(0, demand_torque - motor_torque);
    else % 优先使用发动机
        engine_torque = min(demand_torque, engine_max_torque);
        motor_torque = max(0, demand_torque - engine_torque);
    end

    disp(['Engine Torque: ', num2str(engine_torque), ' Nm']);
    disp(['Motor Torque: ', num2str(motor_torque), ' Nm']);
end

总结

Matlab与CarSim联合仿真的基础框架,涵盖了路径规划、循迹控制、辅助驾驶功能,以及整车相关的电车(EV)和混动(HEV)算法模型。你可以根据具体需求对这些代码进行扩展和优化,并将其集成到CarSim中进行联合仿真。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值