HDU-4704 SUM

原题链接:

https://acm.hdu.edu.cn/showproblem.php?pid=4704

题目含义:

给出一个n,求出这个n能够分解出多少种子序列,每个子序列的和要等于n
比如,n=4,它的子序列有下面几种情况
由1个数字组成:4;
由2个数字组成:13 31 22;
由3个数字组成:112 121 211;
由4个数字组成:1111;
每次选择的数要小于等于n,选择由几个数组成也要小于等于n

解题思路:

我们能够观察到
∑ k = 1 N S ( k ) = C n − 1 0 + C n − 1 1 + C n − 1 2 + ⋅ ⋅ ⋅ + C n − 1 n − 1 \sum_{k=1}^{N}S(k)=C_{n-1}^{0}+C_{n-1}^{1}+C_{n-1}^{2}+···+C_{n-1}^{n-1} k=1NS(k)=Cn10+Cn11+Cn12+⋅⋅⋅+Cn1n1
根据高中数学知识我们可以得到
上式 = 2 N − 1 =2^{N-1} =2N1
此题就转换为了求 2 N − 1 2^{N-1} 2N1,观察数据范围 n < 1 0 100000 n<10^{100000} n<10100000,范围非常大,于是我们就会想到快速幂,但是n还是很大,即使是快速幂也会超时,那么就要结合费马定理来缩小范围。

费马定理:

存在a,p且gcd(a,p)=1,则有 a p − 1 ≡ 1 ( m o d    p ) a^{p-1}\equiv1(\mod p) ap11(modp),即 a p − 1 % p = 1 a^{p-1}\%p=1 ap1%p=1

证明请看:

<>

优化思路一:

a n = a n − ( p − 1 ) ∗ a p − 1 a^{n}=a^{n-(p-1)}*a^{p-1} an=an(p1)ap1
两边同余一个 p p p,得到: a n ≡ a n − ( p − 1 ) m o d p a^{n}\equiv a^{n-(p-1)} modp anan(p1)modp
我们就把 n n n缩小到 n − ( p − 1 ) n-(p-1) n(p1),但是 n > > p − 1 n>>p-1 n>>p1,优化很鸡肋

思路二:

k = n / ( p − 1 ) k=n/(p-1) k=n/(p1)
n = k ∗ ( p − 1 ) + n m o d ( p − 1 ) n=k*(p-1)+n mod(p-1) n=k(p1)+nmod(p1)
(带余除法,k是对应的商,n mod (p-1)是对应的余数)
a n = a k ∗ ( p − 1 ) ∗ a n m o d ( p − 1 ) a^n=a^{k*(p-1)}*a^{n mod (p-1)} an=ak(p1)anmod(p1)
( a k ∗ ( p − 1 ) ≡ 1 m o d p a^{k*(p-1)}\equiv1 modp ak(p1)1modp,由费马小定理可得)
上式可得:
a n ≡ a n m o d ( p − 1 ) m o d p a^n\equiv a^{n mod (p-1)} mod p ananmod(p1)modp
两边同时取余 p p p
a n % p = a n m o d ( p − 1 ) % p a^n\%p=a^{nmod(p-1)}\%p an%p=anmod(p1)%p
优化就完成了,我们只需要计算 n m o d ( p − 1 ) n mod (p-1) nmod(p1)次方就行了

完整代码:

#include <iostream>
#include <string>

using namespace std;

typedef long long ll;

const int MOD = 1e9 + 7;
const int PHI = MOD - 1;

int solve(string num, int mod) {
    long long res = 0;
    for (char c : num) {
        res = (res * 10 + (c - '0')) % mod;
    }
    return res;
}

ll qmi(ll a, ll b, int mod) {
    ll res = 1;
    while (b > 0) {
        if (b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

int main() {
    
    string s;
    while(cin >> s){
        int n = solve(s, PHI);
        n = (n - 1 + PHI) % PHI;  

        ll ans = qmi(2, n, MOD);
        cout << ans << endl;
    } 
    
    return 0;
}
### HDU 4190 编程问题解析 针对HDU-4190这一特定编程挑战,该题目属于动态规划(DP)类问题[^3]。这类问题通常涉及寻找最优路径或者计算最优化的结果,在给定约束条件下实现目标最大化或最小化。 对于此题目的具体描述提到的是一个数塔结构,其中要求从顶部到底部移动,并且每次只能前往相邻节点,最终目的是使得所经过节点数值总和达到最大值。解决此类问题的关键在于理解如何有效地利用已知条件来构建解决方案: #### 动态规划算法设计 为了高效求解这个问题,可以采用自底向上的方法来进行动态规划处理。通过定义状态转移方程,逐步累积中间结果直至获得全局最优解。 ```python def max_sum_path(triangle): n = len(triangle) # 初始化dp数组用于存储各层的最大累加和 dp = [[0]*i for i in range(1, n+1)] # 设置起点即三角形顶端元素作为初始值 dp[0][0] = triangle[0][0] # 填充dp表 for level in range(1, n): for pos in range(level + 1): if pos == 0: dp[level][pos] = dp[level - 1][pos] + triangle[level][pos] elif pos == level: dp[level][pos] = dp[level - 1][pos - 1] + triangle[level][pos] else: dp[level][pos] = max(dp[level - 1][pos], dp[level - 1][pos - 1]) + triangle[level][pos] return max(dp[-1]) triangle = [ [2], [3, 4], [6, 5, 7], [4, 1, 8, 3] ] print(max_sum_path(triangle)) ``` 上述代码实现了基于输入参数`triangle`(表示数塔的数据结构)的函数`max_sum_path()`,它返回从顶至底所能得到的最大路径和。这里采用了二维列表形式保存每一级的最佳选择情况,从而保证能够快速访问并更新所需的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值