CodeForces Round 1046(div.1)A题

C. A Good Problem

https://codeforces.com/problemset/problem/2119/C

题意:

构造一个长度为N的数组,数组最小值为l,最大值为r,满足数组中每个数与运算的值等于异或运算的值,且数组按字典序最小,就输出第k个数,不存在这样数组就输出-1

解题思路:

我们先打表看看什么情况下与运算的值等于异或运算
前面是与运算,后面是异或运算

1 0
0 2
0 1
0 5
0 0
0 6
0 1
0 9
0 0
0 10
0 1
0 13
0 0
0 14
0 1
0 17
0 0
0 18
0 1
0 21
0 0
0 22
0 1
0 25
0 0
0 26
0 1
0 29
0 0
0 30
0 1
0 33
0 0
0 34
0 1
0 37
0 0
0 38
0 1
0 41
0 0
0 42
0 1
0 45
0 0
0 46
0 1
0 49
0 0
0 50

发现当且仅当它们的值都等于0时,才相等,且与运算全部等于0
我们就要去构造数组中的值,主要在异或这个方向上。
在异或中,当两个数的值相等时(相同的数成对出现),等于0;
这里对与运算来说不能全部相同。
由于题目要求按照字典序最小来构造,我们就可以把数组的最后两位放入相同的数,这个就是我们能否构造出目标数组的判断依据

l不能为0,所以特判n=2时,一定无法构造出数组。

上面说到成对出现,那么我们可以考虑一下当n为奇数
要使与运算等于异或运算,异或运算又不可能等于0,我们就要让与运算和异或运算等于一个特定的值,根据与运算的特性,这个数组中的值应该全部相等(如果是 6 & 6 & 7 & 7 = 6 6\&6\&7\&7=6 6&6&7&7=6也可以,不过题目要最小的),恰巧异或运算在奇数次的情况下也等于原来的这个数。
于是n为奇数时,按照题目要求,每个数都等于l最小,可以直接输出。

代码:

常规思路:

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef long long ll;

void solve() {
    ll n, l, r, k;
    cin >> n >> l >> r >> k;
    
    if (n % 2 == 1) {
        cout << l << "\n";
        return;
    }

    if(n==2){
        cout<<-1<<endl;
        return ;
    }
    
    ll m = -1;
    for(int i=l;i<=r;i++){
        if((l&i)==0){
            m=i;
            break;
        }
    }
    
    if (m == -1) {
        cout << "-1\n";
        return;
    }
    
    if (k <= n - 2) {
        cout << l << "\n";
    } else {
        cout << m << "\n";
    }
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    
    int t;
    cin >> t;
    while (t--) 
        solve();
    
    return 0;
}

然而题目数据巨大,这样肯定会超时,时间花费在找m上面,我们需要一个更快的找到对应的m
于是优化版本:

#include <iostream>
using namespace std;

typedef long long ll;

void solve() {
    ll n, l, r, k;
    cin >> n >> l >> r >> k;
    
    if (n % 2 == 1) {
        cout << l << "\n";
        return;
    }
    
    if (n == 2) {
        cout << -1 << "\n";
        return;
    }
    
    ll res = 1;
    bool found = false;
    
    while (res <= r) {
        if (res > l) {
            found = true;
            if (k <= n - 2) {
                cout << l << "\n";
            } else {
                cout << res << "\n";
            }
            break;
        }
        res *= 2;
    }
    
    if (!found) {
        cout << -1 << "\n";
    }
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    
    int t;
    cin >> t;
    while (t--) {
        solve();
    }
    
    return 0;
}

总结:

这个题主要考察了与运算和异或运算的性质:
与运算:
1. A & A & A & A = A A\&A\&A\&A=A A&A&A&A=A
2. A & 0 = 0 A\&0=0 A&0=0
3. A 为偶数: A & ( A + 1 ) = A A为偶数:A\&(A+1)=A A为偶数:A&(A+1)=A
4. A & ( A + 1 ) & ( A + 2 ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ & ( A + N ) = 0 A\&(A+1)\&(A+2)······\&(A+N)=0 A&(A+1)&(A+2)⋅⋅⋅⋅⋅⋅&(A+N)=0
只有当这个连续区间覆盖了所有二进制位都曾经是0的情况时,结果才为0

A=2 (010), N=2
2 & 3 & 4 = 010 & 011 & 100 = 000 ✓
A=4 (100), N=2  
4 & 5 & 6 = 100 & 101 & 110 = 100 ≠ 0 ✗

5.A & (A-1):去掉最低位的1
6.A & -A:获取最低位的1
7.如果 A & B = 0:那么A和B没有公共的1位

### Codeforces Round 927 Div. 3 比赛详情 Codeforces是一个面向全球程序员的比赛平台,定期举办不同级别的编程竞赛。Div. 3系列比赛专为评级较低的选手设计,旨在提供更简单的问让新手能够参与并提升技能[^1]。 #### 参赛规则概述 这类赛事通常允许单人参加,在规定时间内解决尽可能多的问来获得分数。评分机制基于解决问的速度以及提交答案的成功率。比赛中可能会有预测试案例用于即时反馈,而最终得分取决于系统测试的结果。此外,还存在反作弊措施以确保公平竞争环境。 ### 目解析:Moving Platforms (G) 在这道中,给定一系列移动平台的位置和速度向量,询问某时刻这些平台是否会形成一条连续路径使得可以从最左端到达最右端。此问涉及到几何学中的线段交集判断和平面直角坐标系内的相对运动分析。 为了处理这个问,可以采用如下方法: - **输入数据结构化**:读取所有平台的数据,并将其存储在一个合适的数据结构里以便后续操作。 - **时间轴离散化**:考虑到浮点数精度误差可能导致计算错误,应该把整个过程划分成若干个小的时间间隔来进行模拟仿真。 - **碰撞检测算法实现**:编写函数用来判定任意两个矩形之间是否存在重叠区域;当发现新的连接关系时更新可达性矩阵。 - **连通分量查找技术应用**:利用图论知识快速求解当前状态下哪些节点属于同一个集合内——即能否通过其他成员间接相连。 最后输出结果前记得考虑边界条件! ```cpp // 假设已经定义好了必要的类和辅助功能... bool canReachEnd(vector<Platform>& platforms, double endTime){ // 初始化工作... for(double currentTime = startTime; currentTime <= endTime ;currentTime += deltaT){ updatePositions(platforms, currentTime); buildAdjacencyMatrix(platforms); if(isConnected(startNode,endNode)){ return true; } } return false; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值