ICLR 2025 | 知识数据双驱动的开放系统空气质量预测!

ICLR 2025 | Air Quality Prediction with Physics-Informed Dual Neural ODEs in Open Systems

导读:

本文介绍华东师范大学决策智能实验室在 【ICLR 2025 】发表的最新研究成果。该研究与香港科技大学、华为诺亚方舟实验室合作完成。

空气污染对人类健康和环境都构成重大威胁,这对精确空气质量预测提出了迫切需求。当前空气质量预测研究主要依赖于基于物理的模型和数据驱动的模型。基于物理的模型准确性高,但计算资源成本高;数据驱动的模型擅长挖掘数据中的依赖关系,但与物理原理缺乏整合,可能会导致对时空关系的不完整甚至错误表征。因此,提出一种能有效融合基于物理和数据驱动方法优势的混合模型至关重要。

本研究致力于解决此问题。团队开发了 Air-DualODE,一种受物理学指导的双神经 ODE,将物理学动态和数据驱动动态相结合,用于开放系统的空气污染预测。物理学动态引入离散边界感知扩散-对流方程(BA-DAE),通过求解 BA-DAE 生成与物理现象一致的时空序列,以建模开放空气系统;数据驱动动态则使用神经 ODE 来学习物理方程未捕捉到的依赖关系。实验表明,Air-DualODE 在不同尺度的污染物浓度预测方面均取得了最先进的成果。

在这里插入图片描述

 

【论文标题】:Air Quality Prediction with Physics-Informed Dual Neural ODEs in Open Systems

【论文链接】:[2410.19892] Air Quality Prediction with Physics-Informed Dual Neural ODEs in Open Systems

【代码链接】:GitHub - decisionintelligence/Air-DualODE

研究背景

传统的空气质量预测主要依赖于基于物理原理和数据驱动的方法,这两种方法各有其固有的局限性。因此,提出能有效结合两种方法优势的混合模型至关重要。然而,开发这样的模型面临两个主要挑战:

1)开放空气质量系统中物理方程的不切实际假设。现有研究采用物理学中的基本连续性方程来模拟污染物扩散过程。这些方程假定所关注的区域是一个封闭系统,总质量随时间保持恒定。然而,空气质量预测是在开放系统中进行的(如下图),污染物会随着气流不断进入和流出,这种假设无法充分模拟真实物理情况,并可能给模型引入错误的归纳偏差。

2)显式物理方程与隐式深度学习表示之间的不匹配。物理方程为污染物浓度变化建模提供了一个明确且可解释的框架,其中每个变量都与明确的物理意义相关联。相比之下,深度学习方法通过隐式表示来捕捉时空依赖关系,通常缺乏直接的物理解释。现有研究已经开始将物理方程整合到神经网络中。然而,神经网络中的高维潜在空间通常表示物理变量的非线性组合或抽象变换,因此不适于将这些维度解释为特定的物理量。 在这里插入图片描述

核心贡献

本研究致力于解决上述两个挑战。贡献可总结如下:

1)考虑到空气污染传输处于一个开放系统,在显式空间中重新定义了离散扩散-对流方程,并提出了 BA-DAE,这使得物理方程能够更符合开放空气系统中污染物传输的情况。

2)引入了 Air-DualODE 模型,该模型将物理动力学和数据驱动动力学相结合,以充分利用物理知识和数据驱动见解的优势。这是首个专门针对开放系统空气质量预测而设计的双动力学深度学习方法。

3)通过实验证明 Air-DualODE 在城市和国家空间尺度的污染物浓度预测方面均取得了最先进的成果。

方法解析

在这里插入图片描述 如图为 Air-DualODE 模型的整体结构。它由物理动力学、数据驱动动力学和动态融合三部分组成。 和 分别代表物理动力学和数据驱动动力学中的常微分方程函数。

物理动力学

为了与神经网络的隐式表示保持一致,物理动力学直接求解物理方程以获得具有物理意义的时空关联。具体而言,它求解 BA-DAE,即 ,这是针对开放空气系统的一个更真实的方程,以生成物理模拟结果。然后将结果映射到潜在空间中,记为。

为打破封闭系统假设,更贴合开放系统的动态变化,在经典扩散-对流方程基础上增加了边界感知项(污染物源、汇的线性修正),得到 BA-DAE: 在这里插入图片描述 其中, 表示用于近似图拉普拉斯算子的可学习参数。求解过程如下,其中 利用物理知识对污染物传输的时空依赖关系进行编码,这是数据驱动模型无法完全捕捉到的。这弥补了数据驱动方法的局限性,并增强了模型的可解释性。 在这里插入图片描述

数据驱动动力学

数据驱动动力学旨在对超出 BA-DAE 限制的动力系统进行建模。例如,BA-DAE 无法充分描述历史数据模式中的时空相关性,而数据驱动的动力学可以通过从历史数据中学习来弥补这些不足。因此,本文通过在 ODE 函数 中采用具有空间掩码自注意力机制的神经 ODE 实现数据驱动动力学。这一分支能够捕捉潜在空间中的未知动态,并生成潜在动态表示。

在这里插入图片描述

 

动态融合

尽管 和 共享相同的潜在空间和时间跨度,但它们尚未对齐。为解决这个问题,衰减时间对比学习(Decay-TCL)通过使用衰减权重在时间上对齐它们,以实现有效融合。然后,一个图神经网络(GNN)在空间上融合这两种表示,最后将融合结果解码以生成预测 。损失函数如下: 在这里插入图片描述

实验验证

本研究使用两个真实世界的空气质量数据集来评估模型的性能:北京数据集和 KnowAir 数据集。前者在城市层面进行评估,而后者在国家层面进行评估。将 PM2.5 浓度作为目标变量,使用包括温度、气压、湿度、风速和风向在内的气象因素作为辅助协变量,以确保两个数据集的一致性。将 Air-DualODE 与四类基准进行比较:1)经典方法:1)历史平均值(HA)和向量自回归(VAR)。2)基于微分方程网络的方法:潜在 ODE和 ODELSTM。3)时空深度学习方法:DCRNN、STGCN、ASTGCN、GTS、MTSFDG、PM2.5-GNN和 AirFormer。4)物理引导神经网络:AirPhyNet。

在这里插入图片描述 结果表明,Air-DualODE 在所有指标上均优于所有基线模型,这表明该模型能够有效地将物理动力学和数据驱动动力学整合到深度学习框架中,以捕捉复杂的时空动态关系。

总结

本研究设计了 Air-DualODE 来预测城市和国家层面的空气质量。采用双动态机制,利用神经常微分方程(Neural ODEs)来建模物理(已知)和数据驱动(未知)的动态过程,随后在潜在空间中对它们进行对齐和融合。通过将物理方程融入深度学习,Air-DualODE 使得现有的物理知识能够增强模型的学习、推理能力,并最终提高其预测精度。尽管结果令人鼓舞,但预测突发变化仍是空气质量预测中的一个重大挑战。因此,设计专门的机制以更好地处理突发变化是一个重要且有前景的研究方向。此外,团队计划进一步探索物理引导的 DualODE,并将其应用扩展到更广泛的时空预测任务中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值