GNN 赋能时间序列,12 篇顶会神作鲨疯了,SOTA纪录被屠!

在数据爆炸的当今时代,时间序列数据凭借记录动态系统变化的特性,于众多领域中占据关键地位。无论是交通领域对流量的实时监测,还是医疗行业对患者生命体征的长期追踪,时间序列数据都如影随形。然而,传统时间序列分析方法面对复杂关系时,常因难以捕捉变量关联与时间维度变化,而限制了对数据价值的深度挖掘。

图神经网络(GNN)的出现为这一困局带来曙光。GNN将时间点、变量映射为节点,其关联抽象为边,借图结构有效建模时间序列数据,精准学习复杂时空依赖关系。近年来,时间序列与GNN融合的研究蓬勃发展,在预测、检测等实际应用场景中展现出广阔前景。

本次我们精心挑选【12篇】前沿论文,聚焦时间序列与GNN结合的创新探索。它们从不同角度切入,有的创新架构设计,有的提出全新算法,致力于突破传统局限,为时间序列分析赋能。这些研究将为你打开新视野,助你洞悉该领域最新进展,一同打开新的论文研究思路。

感兴趣的可以  [丝 xin]  我~~

【论文1】MTSF-DG: Multiple Time Series Forecasting with Dynamic Graph Modeling

The overall framework

The overall framework

1.研究方法

The reasoning network will output the hidden state for multiple time series at each timestamp 𝑡 using the previous
states from past 𝜏 steps.

The reasoning network will output the hidden state for multiple time series at each timestamp 𝑡 using the previous states from past 𝜏 steps.

该论文将多元时间序列抽象为随时间变化的节点特征与未知图结构的动态图,设计并求解神经 ODE,以此补充缺失的图拓扑,统一空间和时间消息传递,实现深层次图传播与细粒度时间信息聚合,进而表征稳定精确的潜在时空动态 。同时,引入连续的图传播机制与图结构学习模块,以及耦合的时间神经 ODE 与空间神经 ODE 协同工作。

2.论文创新点

Accuracy of traffic domain forecasting

Accuracy of traffic domain forecasting

  1. 连续时空动态建模:首次允许明确编码潜在空间中多元时间序列的完全连续时空动态,解决了离散神经结构导致的不连续潜在状态轨迹与高数值误差问题,避免图的浅层传播,利于下游预测任务 。

  2. 摆脱图先验依赖:提出的图结构学习模块,能动态自提取图结构,减轻对静态图先验的依赖和过平滑问题,可捕捉时间序列间长期空间相关性,拓宽模型在现实场景的应用范围。

  3. 统一时空消息传递:通过两个耦合的ODE统一时间与空间消息传递,学习任意多元时间序列的连续时空动态,该模型结构新颖且有效 。

  4. 可解释性增强:模型通过可视化潜在时空动态,展示了对复杂时空模式的理解能力,有助于研究人员深入洞察时间序列数据背后的物理机制,增强了模型的可解释性。

  5. 广泛适用性验证:在多个真实世界数据集上进行了全面实验,涵盖交通流量预测、电力消耗预测等不同领域,验证了模型在各种场景下的有效性和泛化能力。

【论文2】Graph - MoE: A Mixture - of - Experts Graph Network for Multivariate Time Series Anomaly Detection

The overview of our proposed Graph-MoE network.

The overview of our proposed Graph-MoE network.

1.研究方法

The framework of memory-augmented routers.

The framework of memory-augmented routers.

该论文提出 Graph Mixture of Experts(Graph-MoE)网络用于多变量时间序列异常检测。先利用 RNN 模型提取特征,再通过自注意力学习动态图结构,接着进行图更新操作 。同时引入 MoE 模块自适应整合多层图信息,提出记忆增强路由器捕捉时间序列相关性,以此实现异常检测。

2.论文创新点

Comparison with the state-of-the-art methods in anomaly detection on five challenging datasets

Comparison with the state-of-the-art methods in anomaly detection on five challenging datasets

  1. 多专家层次信息整合:在GNN的各层引入专家模型,形成Graph-MoE网络,不同专家聚焦不同模式,能更全面捕捉多变量时间序列数据中实体间复杂依赖关系和各实体固有特征。

  2. 记忆增强路由器:提出记忆增强路由器模块,利用记忆机制存储全局历史时间特征,挖掘时间序列间相关性,自适应整合GNN多层输出,更好地建模实体关系。

  3. 性能优势显著:在五个公共基准数据集上进行实验,Graph-MoE方法在异常检测任务上达到了最先进的性能,如在SWaT和WADI数据集上,AUROC得分分别达到87.2%和94.2%。

  4. 具有通用性:Graph-MoE可插拔式集成到其他基于GNN的多变量时间序列异常检测方法中,增强不同图基模型的异常检测能力,证明其通用性强。

感兴趣的可以  [丝 xin]  我~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值