Python深度学习框架:用神经网络预测股市,科学or玄学?

小伙伴们,今天我们不谈K线,不谈MACD,我们来聊聊如何用Python的深度学习框架,让神经网络帮你"算命"——啊不,是预测股市走势!

一、神经网络:股市里的"章鱼保罗"

还记得2010年世界杯那个预测神准的章鱼保罗吗?神经网络就像是数字世界的保罗,只不过它不吃贝壳,它"吃"数据!

```python
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout

# 创建一个简单的神经网络
model = Sequential([
    Dense(64, activation='relu', input_shape=(10,)),  # 10个输入特征
    Dropout(0.2),  # 防止过拟合,就像不要把所有鸡蛋放在一个篮子里
    Dense(32, activation='relu'),
    Dense(1)  # 输出一个预测价格
])
```

 二、数据准备:给神经网络喂"饲料"

想要训练出一个好的模型,数据准备就像准备年夜饭一样重要:

```python
import pandas as pd
import numpy as np

# 假装我们有一些股票数据
data = pd.read_csv('stock_data.csv')
prices = data['Close'].values

# 准备训练数据 - 用过去10天预测下一天
X, y = [], []
for i in range(len(prices)-10):
    X.append(prices[i:i+10])
    y.append(prices[i+10])
    
X, y = np.array(X), np.array(y)
```

 三、训练模型:让AI"炒股培训班"开课

训练神经网络就像培养一个股票交易员,只不过这个交易员不会抱怨加班,也不会偷偷刷抖音:

```python
model.compile(optimizer='adam', loss='mse')  # 用adam优化器,就像给模型喝红牛

history = model.fit(X, y, epochs=100, batch_size=32, validation_split=0.2)

# 看看训练效果
plt.plot(history.history['loss'], label='训练集损失')
plt.plot(history.history['val_loss'], label='验证集损失')
plt.legend()
plt.show()
```

四、LSTM:神经网络的"记忆大师"

股市是有记忆的(虽然散户经常失忆),LSTM网络可以记住重要的历史信息:

```python
model = Sequential([
    LSTM(50, return_sequences=True, input_shape=(10, 1)),  # 记忆单元
    LSTM(50),
    Dense(1)
])

# 记得把数据reshape成3D格式 [样本数, 时间步, 特征数]
X = X.reshape((X.shape[0], X.shape[1], 1))
```

 五、预测实战:让AI"算命"

训练好后,让我们看看AI的"预测功力":

```python
# 用最后10天的数据预测明天
last_10_days = prices[-10:].reshape(1, 10, 1)
predicted_price = model.predict(last_10_days)

print(f"AI预测明天收盘价: {predicted_price[0][0]:.2f}")
print("免责声明:预测结果仅供参考,亏了别找我,赚了...可以考虑请我吃饭")
```

六、注意事项:AI炒股的"防坑指南"

1. **过拟合风险**:你的模型可能在历史数据上表现像个股神,但在实盘中亏得像个月光族。记得使用验证集和测试集!

2. **黑天鹅事件**:AI没学过新冠疫情这种课程,遇到突发事件照样懵圈。

3. **数据质量**:垃圾进,垃圾出。如果你的数据是A股的,那预测结果可能...你懂的。

4. **交易成本**:模型没考虑手续费,频繁交易可能给券商打工。

 七、进阶技巧:给你的模型"打鸡血"

```python
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau

# 早停法:发现苗头不对就赶紧止损(多么股市化的技巧!)
early_stop = EarlyStopping(monitor='val_loss', patience=10)

# 动态调整学习率:赚钱难时就小步前进
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5)

model.fit(X, y, epochs=100, callbacks=[early_stop, reduce_lr])
```

八、总结:AI炒股是科学还是玄学?

用深度学习预测股市,就像是给算命先生配了一台超级计算机。它确实能发现一些人眼难以察觉的模式,但股市受到的影响因素太多,从美联储加息到马斯克发推特,从疫情爆发到"大妈进场"...

所以,把这些预测当作辅助工具就好,千万别抵押房子All in!毕竟,如果AI真的能100%准确预测股市,那它的开发者早就成为世界首富了,还开源代码干嘛?

最后送大家一句股市真理:"模型有风险,投资需谨慎。AI或许会错,但手续费永远不会缺席!"

---

最后的最后,给大家分享一个【股票预测】【完整版】的【强化版】!

import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt

# 数据预处理(定义一个函数,用于数据预处理)
def preprocess_data(prices, look_back=10):
    # 归一化处理
    # look_back:时间步长,表示用多少天的数据来预测下一天的价格;MinMaxScaler:将数据归一化到 [0, 1] 范围内。
    scaler = MinMaxScaler(feature_range=(0, 1))
    prices_scaled = scaler.fit_transform(prices.reshape(-1, 1))
    
    # 创建训练数据
    X, y = [], []
    for i in range(len(prices_scaled) - look_back):
        X.append(prices_scaled[i:i+look_back])
        y.append(prices_scaled[i+look_back])
    
    return np.array(X), np.array(y), scaler

# 构建 LSTM 模型
# input_shape:输入数据的形状。
# LSTM(100, return_sequences=True):第一层 LSTM,有 100 个记忆单元,返回完整序列。
# Dropout(0.3):防止过拟合,随机丢弃 30% 的神经元。第二层 LSTM,有 100 个记忆单元。
# Dense(1):输出层,输出一个预测值
def build_lstm_model(input_shape):
    model = Sequential([
        LSTM(100, return_sequences=True, input_shape=input_shape),
        Dropout(0.3),
        LSTM(100),
        Dropout(0.3),
        Dense(1)
    ])
    return model

# 训练模型
# epochs:训练轮次。
# batch_size:每个批次的大小。
# validation_split:用于验证的数据比例。

def train_model(model, X, y, epochs=200, batch_size=32, validation_split=0.2):
    model.compile(optimizer='adam', loss='mse')
    history = model.fit(X, y, epochs=epochs, batch_size=batch_size, validation_split=validation_split, verbose=1)
    return history

# 预测
def predict_price(model, last_days, scaler):
    last_days_scaled = scaler.transform(last_days.reshape(-1, 1))
    last_days_reshaped = last_days_scaled.reshape(1, -1, 1)
    predicted_price_scaled = model.predict(last_days_reshaped)
    predicted_price = scaler.inverse_transform(predicted_price_scaled)
    return predicted_price[0][0]

# 主函数
def main():
    # 获取数据,涉及股票仅作案例距离,股票代码可以根据自己的需要进行修改
    data = get_price('000001.XSHE', start_date='2024-01-01', end_date='2025-03-25', frequency='1d')
    prices = data['close'].values
    
    # 数据预处理
    look_back = 10
    X, y, scaler = preprocess_data(prices, look_back)
    
    # 重塑数据形状
    X = X.reshape((X.shape[0], X.shape[1], 1))
    
    # 构建模型
    model = build_lstm_model((look_back, 1))
    
    # 训练模型
    history = train_model(model, X, y)
    
    # 绘制训练损失
    plt.plot(history.history['loss'], label='训练集损失')
    plt.plot(history.history['val_loss'], label='验证集损失')
    plt.legend()
    plt.show()
    
    # 预测明天的收盘价
    # scaler:归一化工具
    last_10_days = prices[-look_back:]
    predicted_price = predict_price(model, last_10_days, scaler)
    
    print(f"AI预测明天收盘价: {predicted_price:.2f}")
    print("免责声明:预测结果仅供参考,亏了别找我,赚了...可以考虑请我吃饭")

if __name__ == "__main__":
    main()

希望这篇"不那么正经"的教程能让你在笑中学习到知识。记住,在股市中,保持幽默感比保持收益率容易多了!都看到这里了,记得点个关注,更多干货与你分享!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值