- 博客(180)
- 收藏
- 关注
原创 Shell编程基本介绍
注意,一定要写成 ./test.sh,而不是 test.sh,运行其它二进制的程序也一样,直接写 test.sh,linux 系统会去 PATH 里寻找有没有叫 test.sh 的,而只有 /bin, /sbin,/usr/bin,/usr/sbin 等在 PATH 里,你的当前目录通常不在 PATH 里,所以写成 test.sh 是会找不到命令的,要用 ./test.sh 告诉系统说,就在当前目录找。既然需要指定起始位置,那么就涉及到计数方向的问题,到底是从字符串左边开始计数,还是从字符串右边开始计数。
2025-10-27 23:14:10
781
原创 机器学习:PCA算法代码原理,优缺点及代码实现
PCA,即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪。选择主成分:根据特征值的大小,选择最重要的几个特征向量,这些特征向量对应的特征值最大,它们代表了数据中最大的方差。标准化数据:由于PCA对数据的尺度敏感,因此在进行PCA之前,通常需要对数据进行标准化处理,确保每个特征的均值为0,标准差为1。这意味着边界的像素将直接取自图像的最边缘像素。
2025-10-27 22:50:49
767
原创 机器学习——逻辑回归
以肿瘤分类为例(肿瘤分恶性/良性),我们有关于肿瘤的一串数据特征(X),每项数据都对应一个肿瘤检测结果(y),在这里肿瘤检测结果根据数据大小判别都只对应两种情况:恶性与良性,但恶性与良性间有个临界点只有当大于等于这个临界点才是恶性,小于则是良性,将数据特征与检测结果用函数表示则是:。虽然名字中有“回归”,但它是一个分类算法,因为它的输出是一个概率,用来预测样本属于某一类的可能性。在逻辑回归模型中,正则化 是一种常用的技术,用于避免模型过拟合,特别是在特征数量较多或数据噪声较大的情况下。
2025-10-27 15:47:02
981
原创 深度学习复习汇总
卷积核也称为滤波器或特征检测器,在CNN中,卷积核是一个小的矩阵或张量,它通过与输入的图像进行卷积操作来提取图像中的特征。卷积操作可以看作是将卷积核与输入数据的某一部分进行点积运算,然后将结果相加得到一个输出值。卷积核的大小通常是正方形的,并且由多个通道组成,其中每个通道对应一个特征。例如,可以有一个大小为3x3x3的卷积核,其中3x3表示卷积核的空间大小,3表示输入图像的通道数。卷积神经网络是一种深度学习模型,主要应用于图像和视频处理任务。它的设计灵感来源于生物视觉系统的工作原理。
2025-10-23 21:18:02
1013
原创 机器学习 TF-IDF方法
值得注意的是,这里的第2个词并不是指在那篇文章中的第2个单词,而是在文本中所有单词中的第2个。例如,在搜索引擎中,搜索引擎可以根据用户输入的查询词,计算每个网页中这些查询词的TF-IDF值,然后根据这些值对网页进行排序,将最相关的网页排在前面。一些常用的词(如“的”,“是”,“在”等)可能在很多文档中频繁出现,但它们对文档的主题可能没有太大贡献。值得注意的是,这里的第几个词并不是指在那篇文章中的第几个,而是在文本中所有单词中的第几个。# 拟合完之后会有一串数据,表示,在第几篇中,第几个词的TF-IDF值。
2025-10-23 21:17:26
780
原创 《深度学习》Dlib库 CNN卷积神经网络 人脸识别
目录一、如何实现CNN人脸识别1、CNN核心概念1)卷积层2)池化层3)激活函数4)全连接层2、步骤1)加载预训练的人脸识别模型2)读取图像并检测人脸3)提取人脸特征向量4)比较相似度二、案例实现1、完整代码运行结果:一、如何实现CNN人脸识别1、CNN核心概念1)卷积层卷积层是CNN的核心组成部分之一,它通过应用一组卷积核(也称为滤波器)在输入图像上滑动,提取图像的局部特征。每个卷积核会对图像进行卷积操作,得到一个输出特征图。2)池化层。
2025-10-23 21:16:35
377
原创 Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算a应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算。
2025-10-20 22:58:54
495
原创 《深度学习》【项目】自然语言处理——情感分析 <上>
words_line.append(vocab.get(word,vocab.get(UNK))) # vocab为词库,其中为字典形式,使用get去获取遍历出来的字符的值,值可表示索引值,如果该字符不在词库中则将其值增加为字典中键UNK对应的值,words_line中存放的是每一行的每一个字符对应的索引值。应该是固定长度,如何固定长度接着看,固定长度每次传入数据与图像相似,例如输入评论长度为32,那么传入的数据为32*200的矩阵,表示这一批词的独热编码,200表示维度。
2025-10-20 22:58:18
922
原创 【YOLO模型】(4)--YOLO V3超超超超详解
YOLO V3的网络架构只有卷积层,且有三个输出。YOLO V3先验框共有9个,分为小、中、大三种scale,每种有三个规格。引入残差网络思想,搭建更深层次的网络。使用softmax函数替代logistic函数,适用于多分类的任务。
2025-10-20 22:57:55
1186
原创 OpenCV图像形态学详解
它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。代码的学习就是多练,多看,多思考,相信大家坚持下去一定会成功的,希望这篇文章能帮助到您!作用:弥合较窄的间断和细长的沟壑,清除小的孔洞,填补轮廓线中的断裂。膨胀是腐蚀的对偶操作,可以看作是将图像"扩张"或"变粗"的过程。
2025-10-19 22:14:05
470
原创 机器学习——逻辑回归
以肿瘤分类为例(肿瘤分恶性/良性),我们有关于肿瘤的一串数据特征(X),每项数据都对应一个肿瘤检测结果(y),在这里肿瘤检测结果根据数据大小判别都只对应两种情况:恶性与良性,但恶性与良性间有个临界点只有当大于等于这个临界点才是恶性,小于则是良性,将数据特征与检测结果用函数表示则是:。虽然名字中有“回归”,但它是一个分类算法,因为它的输出是一个概率,用来预测样本属于某一类的可能性。在逻辑回归模型中,正则化 是一种常用的技术,用于避免模型过拟合,特别是在特征数量较多或数据噪声较大的情况下。
2025-10-19 22:13:31
628
原创 十大常用机器学习算法总结
它的核心思想是,对于给定的样本,计算各个类别的后验概率,并选择概率最大的类别作为预测结果。决策树(Decision Tree)是一种直观的分类和回归工具,它通过一系列的问题将数据分割成越来越小的子集,直到满足特定的条件,最终达到基本的决策规则。聚类算法是无监督学习的一种方法,用于将数据集中的样本划分为若干个组别或“簇”,使得同一个簇内的样本相似度高,而不同簇内的样本相似度低。其中,C为类型,X为特征,P(C|X)为后验概率,P(X|C)为似然概率,P(C)为类型的先验概率,P(X)为特征的边缘概率。
2025-10-16 21:01:32
1021
原创 深度学习】--卷积神经网络
我们看到第一行三个图片中,目标物体(黑色标注)在图片的不同位置,它们经过卷积之后,得到了第二行的三个特征图,我们再将特征图进行最大池化,发现池化后的压缩结果都为3,将其识别为了同一个特征,其余的噪声影响都被处理了。我们的目标是识别图片中的花朵是不是鸢尾花,那我们卷积时寻找的特征图,当然得是关于鸢尾花的特征,尽量减少其余噪声的影响。对于卷积层,可以形象的将卷积核当作是每个人的眼睛,每个眼睛都能得到一个特征图,不同的眼睛(卷积核)看到的图片是不一样的,这样我们就能得到多个不同的特征图。什么是画面不变性呢?
2025-10-16 21:00:49
609
原创 Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算a应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算。
2025-10-16 21:00:18
361
原创 Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算a应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算。
2025-10-12 22:14:07
842
2
原创 深度学习》【项目】自然语言处理——情感分析 <上>
应该是固定长度,如何固定长度接着看,固定长度每次传入数据与图像相似,例如输入评论长度为32,那么传入的数据为32*200的矩阵,表示这一批词的独热编码,200表示维度。可以统一使用一个数字(非词/字的数字)替代,即选择了评论固定长度的文字后,这段文字内可能有频率低的字,将其用一个数字替代,项目内使用<UNK>替代。每个词/字转换为词向量长度(维度)200,使用腾讯训练好的词向量模型有4960个维度,需要这个模型或者文件可私信发送。3)每一次传入的词/字的个数是否就是评论的长度。7)被压缩的词/字如何处理?
2025-10-12 22:13:19
807
原创 OpenCV图像形态学详解
它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。代码的学习就是多练,多看,多思考,相信大家坚持下去一定会成功的,希望这篇文章能帮助到您!作用:弥合较窄的间断和细长的沟壑,清除小的孔洞,填补轮廓线中的断裂。膨胀是腐蚀的对偶操作,可以看作是将图像"扩张"或"变粗"的过程。
2025-10-12 22:12:42
668
原创 《深度学习》OpenCV LBPH算法人脸识别 原理及案例解析
目录一、LBPH算法1、概念2、实现步骤3、方法1)步骤1• 缩放• 旋转和平移2)步骤2二、案例实现1、完整代码1)图像内容:2)运行结果:一、LBPH算法1、概念在OpenCV中,LBPH(Local Binary Patterns Histogram,局部二值模式直方图)算法主要用于人脸识别任务。LBPH是一种用于图像特征提取的算法。它首先将图像划分为小的局部区域,然后在每个区域中提取局部二值模式(Local Binary Patterns)。
2025-10-10 22:27:32
397
原创 《深度学习》模型的部署、web框架 服务端及客户端案例
目录一、模型的部署1、模型部署的定义与目的1)定义2)目的2、模型部署的步骤1)导出模型2) 部署模型3)测试模型4)监控模型3、模型部署的方式1)云端部署2)嵌入式设备部署3)边缘计算部署4)移动端部署5)FPGA和GPU部署二、web框架对比1、Django1)优点2)缺点2、Pyramid1)优点2)缺点3、Flask1)优点2)缺点三、案例实现1、创建客户端运行结果:2、创建一个服务端运行状态:3、运行方法一、模型的部署。
2025-10-10 22:26:20
525
原创 YOLO基本知识
1、什么是YOLOYOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置,例如下图所示。YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。
2025-10-10 22:24:42
3048
原创 《深度学习》Dlib库 CNN卷积神经网络 人脸识别
目录一、如何实现CNN人脸识别1、CNN核心概念1)卷积层2)池化层3)激活函数4)全连接层2、步骤1)加载预训练的人脸识别模型2)读取图像并检测人脸3)提取人脸特征向量4)比较相似度二、案例实现1、完整代码运行结果:一、如何实现CNN人脸识别1、CNN核心概念1)卷积层卷积层是CNN的核心组成部分之一,它通过应用一组卷积核(也称为滤波器)在输入图像上滑动,提取图像的局部特征。每个卷积核会对图像进行卷积操作,得到一个输出特征图。2)池化层。
2025-10-09 20:42:54
371
原创 《深度学习》Dlib、OpenCV 轮廓绘制
目录一、Dlib轮廓绘制1、什么是轮廓绘制2、步骤1)导入所需的库和模型2)加载人脸检测器3)读取图像4)人脸检测5)关键点定位6)绘制轮廓线条7)展示结果二、案例实现1、完整代码运行结果:2、实时摄像头或视频检测运行结果:一、Dlib轮廓绘制1、什么是轮廓绘制在Dlib中,人脸识别的轮廓绘制是指通过检测人脸的关键点位置,使用直线或曲线连接这些关键点,从而绘制出人脸的轮廓线条。这些关键点通常包括眉毛、眼睛、鼻子、嘴巴等部位的位置。
2025-10-09 20:41:36
341
原创 《深度学习》【项目】自然语言处理——情感分析 <上>
words_line.append(vocab.get(word,vocab.get(UNK))) # vocab为词库,其中为字典形式,使用get去获取遍历出来的字符的值,值可表示索引值,如果该字符不在词库中则将其值增加为字典中键UNK对应的值,words_line中存放的是每一行的每一个字符对应的索引值。应该是固定长度,如何固定长度接着看,固定长度每次传入数据与图像相似,例如输入评论长度为32,那么传入的数据为32*200的矩阵,表示这一批词的独热编码,200表示维度。
2025-10-09 20:39:53
941
原创 深度学习复习汇总
卷积核也称为滤波器或特征检测器,在CNN中,卷积核是一个小的矩阵或张量,它通过与输入的图像进行卷积操作来提取图像中的特征。卷积操作可以看作是将卷积核与输入数据的某一部分进行点积运算,然后将结果相加得到一个输出值。卷积核的大小通常是正方形的,并且由多个通道组成,其中每个通道对应一个特征。例如,可以有一个大小为3x3x3的卷积核,其中3x3表示卷积核的空间大小,3表示输入图像的通道数。
2025-09-28 22:20:43
790
原创 机器学习——逻辑回归
以肿瘤分类为例(肿瘤分恶性/良性),我们有关于肿瘤的一串数据特征(X),每项数据都对应一个肿瘤检测结果(y),在这里肿瘤检测结果根据数据大小判别都只对应两种情况:恶性与良性,但恶性与良性间有个临界点只有当大于等于这个临界点才是恶性,小于则是良性,将数据特征与检测结果用函数表示则是:。虽然名字中有“回归”,但它是一个分类算法,因为它的输出是一个概率,用来预测样本属于某一类的可能性。在逻辑回归模型中,正则化 是一种常用的技术,用于避免模型过拟合,特别是在特征数量较多或数据噪声较大的情况下。
2025-09-27 21:37:12
1080
原创 selenium完整版一览
selenium库是一种用于Web应用程序测试的工具,它可以驱动浏览器执行特定操作,自动按照脚本代码做出单击、输入、打开、验证等操作,支持的浏览器包括IE、Firefox、Safari、Chrome、Opera等。而在办公领域中如果经常需要使用浏览器操作某些内容,就可以使用selenium库来实现,例如将大量数据上传到网页中或者实现自动驱动浏览器进行操作。与requests库不同的是,selenium库是基于浏览器的驱动程序来驱动浏览器执行操作的。
2025-09-27 21:34:45
678
原创 OpenCV图像形态学详解
它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。代码的学习就是多练,多看,多思考,相信大家坚持下去一定会成功的,希望这篇文章能帮助到您!作用:弥合较窄的间断和细长的沟壑,清除小的孔洞,填补轮廓线中的断裂。膨胀是腐蚀的对偶操作,可以看作是将图像"扩张"或"变粗"的过程。
2025-09-25 21:26:09
963
原创 OpenCV图像形态学详解
一、什么是图像形态学?图像形态学(Image Morphology)是数字图像处理领域的一个重要分支,主要研究基于形状的图像处理技术。它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。二、基本概念:结构元素结构元素(Structuring Element)是形态学操作的核心,它决定了操作的邻
2025-09-25 21:25:18
583
原创 selenium完整版一览
selenium库是一种用于Web应用程序测试的工具,它可以驱动浏览器执行特定操作,自动按照脚本代码做出单击、输入、打开、验证等操作,支持的浏览器包括IE、Firefox、Safari、Chrome、Opera等。而在办公领域中如果经常需要使用浏览器操作某些内容,就可以使用selenium库来实现,例如将大量数据上传到网页中或者实现自动驱动浏览器进行操作。与requests库不同的是,selenium库是基于浏览器的驱动程序来驱动浏览器执行操作的。
2025-09-25 21:24:45
1175
原创 OpenCV图像形态学详解
它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。代码的学习就是多练,多看,多思考,相信大家坚持下去一定会成功的,希望这篇文章能帮助到您!作用:弥合较窄的间断和细长的沟壑,清除小的孔洞,填补轮廓线中的断裂。膨胀是腐蚀的对偶操作,可以看作是将图像"扩张"或"变粗"的过程。
2025-09-24 21:02:40
890
原创 Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算a应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算。
2025-09-24 21:02:10
733
原创 深度学习》【项目】自然语言处理——情感分析 <上>
应该是固定长度,如何固定长度接着看,固定长度每次传入数据与图像相似,例如输入评论长度为32,那么传入的数据为32*200的矩阵,表示这一批词的独热编码,200表示维度。可以统一使用一个数字(非词/字的数字)替代,即选择了评论固定长度的文字后,这段文字内可能有频率低的字,将其用一个数字替代,项目内使用<UNK>替代。每个词/字转换为词向量长度(维度)200,使用腾讯训练好的词向量模型有4960个维度,需要这个模型或者文件可私信发送。3)每一次传入的词/字的个数是否就是评论的长度。7)被压缩的词/字如何处理?
2025-09-24 21:01:25
606
原创 【自然语言处理】(3) --RNN循环神经网络
比如:将“我要去打篮球”,分词后“我”,“要”,“去”,“打”,“篮球”,放进神经网络中训练得到一个结果之后。注意:展开后,RNN看起来像是一个多层的前馈神经网络,但每一层的权重是共享的,每层的U、W、b是一样的,这是RNN的重要特点。但是,对于每个层都会计算的y结果,我们一般情况只需要最后一层的输出结果,因为只有它是吸收所有信息后的结果,前面层的结果几乎不要。yn,也就是说,输入和输出序列必须要是等长的。重要特点:RNN看起来像是一个多层的前馈神经网络,但每一层的权重是共享的,每层的U、W、b是一样的。
2025-09-21 21:22:09
983
原创 【机器学习】(11) --回归树算法
树中的每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。后剪枝:先从训练集生成一颗完整的决策树,然后自底向上对非叶节点进行考察,若将该节点对应的子树替换为叶节点,能带来泛化性能的提升,则将该子树替换为叶节点。与分类树的主要区别在于,回归树的输出是连续的数值,而不是离散的类别标签。预剪枝:在决策树的生成过程中,对每个节点在划分前先进行评估,若当前的划分不能带来泛化性能的提升,则停止划分,并将当前节点标记为叶节点。
2025-09-21 20:51:09
864
原创 OpenCV图像形态学详解
它最初源于对生物体形态的研究,后来被引入到图像分析中,成为提取图像中有用形状特征的有效工具。在OpenCV中,形态学操作主要基于二值图像(黑白图像)进行处理,通过结构元素(kernel)与图像进行特定操作来实现各种效果,广泛应用于边缘检测、噪声去除、形状分析等领域。代码的学习就是多练,多看,多思考,相信大家坚持下去一定会成功的,希望这篇文章能帮助到您!作用:弥合较窄的间断和细长的沟壑,清除小的孔洞,填补轮廓线中的断裂。膨胀是腐蚀的对偶操作,可以看作是将图像"扩张"或"变粗"的过程。
2025-09-21 20:50:35
571
原创 深度学习】--卷积神经网络
我们看到第一行三个图片中,目标物体(黑色标注)在图片的不同位置,它们经过卷积之后,得到了第二行的三个特征图,我们再将特征图进行最大池化,发现池化后的压缩结果都为3,将其识别为了同一个特征,其余的噪声影响都被处理了。我们的目标是识别图片中的花朵是不是鸢尾花,那我们卷积时寻找的特征图,当然得是关于鸢尾花的特征,尽量减少其余噪声的影响。对于卷积层,可以形象的将卷积核当作是每个人的眼睛,每个眼睛都能得到一个特征图,不同的眼睛(卷积核)看到的图片是不一样的,这样我们就能得到多个不同的特征图。什么是画面不变性呢?
2025-09-21 20:49:58
861
原创 Python进阶第三方库之Pandas
2008年WesMcKinney开发出的库专门用于数据挖掘的开源python库以Numpy为基础,借力Numpy模块在计算方面性能高的优势基于matplotlib,能够简便的画图独特的数据结构。
2025-09-17 21:58:24
1166
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅