3.5/Q1,GBD数据库最新一区文章解读

 

文章题目:Global burden of low vision and blindness due to age-related macular degeneration from 1990 to 2021 and projections for 2050

 

DOI:10.1186/s12889-024-21047-x

 

中文标题:1990年至2021年因年龄相关性黄斑变性导致的低视力和失明的全球负担以及2050年的预测

 

发表杂志:BMC Public Health

 

影响因子:1区,IF=3.5

 

发表时间:2024年12月

 

今天给大家分享一篇在2024年12月发表在《BMC Public Health》(1区,IF=3.5)的文章。本研究旨在评估1990年至2021年AMD相关视力低下和失明的全球负担和趋势,并预测了2050年的情况。

 

研究方法:数据来自2021年全球疾病负担(GBD 2021)研究,涵盖204个国家和地区。每100,000人口计算了针对视力低下和AMD失明的关键指标,包括患病人数、年度伤残调整生命年(DALY)、年龄标准化患病率(ASPR)和年龄标准化DALY率(ASDALYR)。趋势分析使用估计年度百分比变化(EAPC)方法,K均值聚类确定具有相似负担和趋势的区域。自回归综合移动平均线(ARIMA)和指数平滑(ES)模型提供了未来预测。

Table&Figure

 

结果解读:全球范围内,患病病例总数和DALY大幅增加。因AMD导致的低视力和失明患病人数从1990年的3,640,180例(95% UI:3,037,098 - 4,353,902例)增加到2021年的8,057,521例(95% UI:6,705,284-9,823,238例)。DALY从1990年的302,902例(95% UI:206,475 - 421,952例)增加到2021年的578,020例(95% UI:401,241-797,570例)。从1990年到2021年,AMD相关低视力和失明的ASPR和ASDALYR均呈下降趋势。每100,000人口的ASPR为94(95% UI:78.32至114.42),EAPC为-0.26(95% CI:-0.31至-0.22),每100,000人口的ASDALYR为6.78(95% UI:4.7至9.32),EAPC为-0.94(95% CI:-1.01至-0.88)。AMD相关低视力与失明的疾病负担随年龄增长而增加,女性患者的负担略高于男性。按社会人口指数(SDI)进行区域分层显示,SDI较低的地区AMD相关低视力与失明的负担高于SDI较高的地区。1990年至2021年,ASPR和ASDALYR显著增加,主要出现在撒哈拉以南非洲的南部和中部地区。此外,患病率和DALY的增加因地区、国家和社会经济发展水平而异。ARIMA模型预测,到2050年,因AMD导致的低视力和失明的患病人数将达到13,880,610(95% CI:9,805,575-17,955,645),DALY将为764,731(95% CI:683,535-845,926)。ES模型预测,到2050年,AMD相关低视力与失明的患病人数将达到9,323,124(95% CI:5,222,474-13,423,774),DALY为641,451(95% CI:383,588-899,318)。

 

结论:本研究显示,1990年至2021年,全球AMD相关低视力和失明患病人数及导致的DALY在过去30年间呈上升趋势,且与年龄、性别、社会经济地位、地理位置等因素相关。预测模型显示,随着人口老龄化,AMD导致的低视力和失明患者人数及导致的DALY将持续上升。预计到2050年,全球将有超过900万人受到AMD相关视力丧失的影响,其中女性受影响尤为严重。本研究结果可为公共卫生规划、资源配置和医疗政策制定提供数据支持,确保有效应对未来AMD相关低视力和失明增加带来的挑战。

 

大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!

### GBD 数据库介绍 GBD 文件地理数据库种用于存储空间数据和属性数据的容器,支持复杂的数据结构以及丰富的地理处理功能。为了访问这种类型的地理数据库中的要素类和其他对象,通常依赖于特定驱动器的支持[^1]。 ### 使用方法 对于想要读取或写入 GDB 文件的操作而言,GDAL 提供了解析该种格式的能力。具体来说: - **安装必要的驱动**:确保已经安装了 FileGDB 或 OpenFileGDB 驱动来实现对 GDB 的读取能力。 - **加载并操作数据集**:通过 GDAL 库可以轻松打开 .gdb 文件夹形式存在的地理数据库,并对其进行查询、遍历等基本操作。 ```python from osgeo import ogr, gdal # 注册所有可用驱动 gdal.AllRegister() driver = ogr.GetDriverByName('OpenFileGDB') # 或者 'FileGDB' dataSource = driver.Open("path_to_your_gdb_file.gdb", 0) if dataSource is None: print("无法打开指定路径下的 GDB 文件") else: layerNames = [layer.GetName() for layer in dataSource] print(f"GDB 中包含图层: {', '.join(layerNames)}") ``` 上述代码展示了如何利用 Python 和 GDAL/ogr 打开个 GDB 文件,并打印其中所含有的各个图层名称。 ### 应用场景 GBD 数据库广泛应用于 GIS( Geographic Information System 地理信息系统)领域内各种项目当中,比如城市规划、环境保护监测、资源管理等方面。由于其能够高效地管理和分析大规模的空间数据集合,在涉及到多维度时空数据分析的任务里表现尤为出色。 #### 特定案例展示 假设有个名为 `city_planning` 的 GBD 文件地理数据库包含了多个关于某座城市的基础设施建设情况的相关信息表单(如道路网路分布、公共设施位置)。借助 GDAL 工具包提供的接口函数,开发者们便可以在不改变原有数据格式的前提下完成对该组数据的各种定制化需求处理工作,例如提取某些特定域内的兴趣点列表或将不同来源的地图资料融合在起形成新的专题地图产品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值