3.5/Q1,GBD数据库最新文章解读

文章题目:Burden, trends, projections, and spatial patterns of lip and oral cavity cancer in Iran: a time-series analysis from 1990 to 2040

 

DOI:10.1186/s12889-025-22202-8

 

中文标题:伊朗唇癌和口腔癌的负担、趋势、预测和空间模式:1990 年至 2040 年的时间序列分析

 

发表杂志:BMC Public Health

 

影响因子:1区,IF=3.5

 

发表时间:2025年4月

 

今天给大家分享一篇在 2025年4月发表在《BMC Public Health》(1区,IF=3.5)的文章。本研究调查了 1990 年至 2021 年伊朗 LOCC 负担的长期趋势。

 

研究方法:我们使用 2021 年全球疾病负担 (GBD) 数据集分析了 1990 年至 2021 年伊朗的 LOCC 负担,重点关注按性别和省份分层的年龄标准化残疾调整生命年 (ASDR)、死亡率 (ASMR) 和发病率 (ASIR)。采用连接点回归分析确定时间趋势,计算年百分比变化 (APC) 和平均 APC (AAPC)。使用混合预测模型(ARIMA、ETS 和神经网络)生成到 2040 年的未来预测。空间分析在 1990 年和 2021 年检测到热点和冷点区域。

Table&Figure

结果解读:我们观察到从1990 年到 2021 年,所有三个指标(残疾调整生命年 [disability-adjusted life years, DALY]、ASMR 和 ASIR)的 LOCC 负担都显著增加。连接点分析揭示了显著的时间趋势,男女 AAPC 总体上呈上升轨迹。具体而言,ASDR 的总体 AAPC 男女均为 0.34% (95% 置信区间 [CI]: 0.26,0.39),女性为 0.40% (95% CI: 0.32,0.45),男性为 0.35% (95% CI: 0.27,0.42)。对于 ASMR,总体 AAPC 为女性 0.41% (95% CI: 0.34,0.46)、0.54% (95% CI: 0.48,0.58) 和男性 0.36% (95% CI: 0.29,0.42)。同样,ASIR 的总体 AAPC 为女性 1.33% (95% CI: 1.24,1.40)、1.51% (95% CI: 1.43,1.59) 和男性 1.26% (95% CI: 1.17,1.33)。地理差异很明显,大多数省份的 ASDR 和 ASMR 都在增加,而 ASIR 在所有省份都显示出一致的上升趋势。值得注意的是,与男性相比,女性的 ASDR、ASMR 和 ASIR 增加略有明显。预测表明,到 2040 年,DALY 将呈下降趋势,死亡率将波动但稳定,发病率将持续上升。空间分析表明,1990 年和 2021 年国家层面均无显著空间自相关。

结论:我们的研究结果强调了伊朗LOCC 负担的增加,未来的预测表明发病率不断上升。针对地区差异和风险因素的有针对性的公共卫生干预措施至关重要。针对特定性别和特定地区的政策以及早期检测策略对于减轻疾病负担至关重要。

大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!

### GBD 数据库介绍 GBD 文件地理数据库是一种用于存储空间数据和属性数据的容器,支持复杂的数据结构以及丰富的地理处理功能。为了访问这种类型的地理数据库中的要素类和其他对象,通常依赖于特定驱动器的支持[^1]。 ### 使用方法 对于想要读取或写入 GDB 文件的操作而言,GDAL 提供了解析该种格式的能力。具体来说: - **安装必要的驱动**:确保已经安装了 FileGDB 或 OpenFileGDB 驱动来实现对 GDB 的读取能力。 - **加载并操作数据集**:通过 GDAL 库可以轻松打开 .gdb 文件夹形式存在的地理数据库,并对其进行查询、遍历等基本操作。 ```python from osgeo import ogr, gdal # 注册所有可用驱动 gdal.AllRegister() driver = ogr.GetDriverByName('OpenFileGDB') # 或者 'FileGDB' dataSource = driver.Open("path_to_your_gdb_file.gdb", 0) if dataSource is None: print("无法打开指定路径下的 GDB 文件") else: layerNames = [layer.GetName() for layer in dataSource] print(f"GDB 中包含图层: {', '.join(layerNames)}") ``` 上述代码展示了如何利用 Python 和 GDAL/ogr 打开一个 GDB 文件,并打印其中所含有的各个图层名称。 ### 应用场景 GBD 数据库广泛应用于 GIS( Geographic Information System 地理信息系统)领域内各种项目当中,比如城市规划、环境保护监测、资源管理等方面。由于其能够高效地管理和分析大规模的空间数据集合,在涉及到多维度时空数据分析的任务里表现尤为出色。 #### 特定案例展示 假设有一个名为 `city_planning` 的 GBD 文件地理数据库包含了多个关于某座城市的基础设施建设情况的相关信息表单(如道路网路分布、公共设施位置)。借助 GDAL 工具包提供的接口函数,开发者们便可以在不改变原有数据格式的前提下完成对该组数据的各种定制化需求处理工作,例如提取某些特定区域内的兴趣点列表或将不同来源的地图资料融合在一起形成新的专题地图产品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值