深入解析哈希表:从原理到实现(拉链法详解)

        哈希表(Hash Table)是计算机科学中最重要的数据结构之一,它能够在平均 O(1) 时间内完成数据的插入、删除和查找操作。本文将围绕**拉链法(Chaining)**的实现,结合代码示例和图示,深入讲解哈希表的核心原理和设计细节。

1. 哈希表简介

哈希表通过哈希函数将键(key)映射到一个固定大小的数组中,从而实现快速的数据访问。它的核心优势在于:

  • 高效查找:理想情况下,查找时间复杂度为 O(1)。

  • 灵活扩展:可通过动态扩容适应数据增长。

  • 广泛应用:常用于数据库索引、缓存(如Redis)、编译器符号表等。

哈希表的核心组件

  1. 哈希函数(Hash Function):将键映射到数组索引。

  2. 冲突解决策略:当不同键映射到同一位置时,如何存储它们(本文重点讲解拉链法)。

  3. 动态扩容机制(可选):当数据量增长时调整哈希表大小。

哈希表的一些小内容:

     1. 哈希表是一种高效的数据结构,它通过哈希函数将健映射到表中一个位置来访问记录,以实现快速的数据查找,插入和删除操作

     2.哈希函数把任意大小的数据映射到固定大小的值(哈希值)

     3.哈希冲突:当不同的数通过哈希函数计算出相同的哈希值时,就发生了冲突

     4.映射:将一段较大的数映射到一段相对较小的数组

     5.映射的目的是为了划分数,把一堆数划分不同的部分

2. 拉链法(Chaining)的实现

拉链法是最常用的冲突解决方法之一,它的核心思想是:

如果多个键映射到同一个哈希桶(bucket),就用链表将它们存储在一起。

2.1 数据结构定义

以下是基于C语言的拉链法哈希表实现:

#define N 100003  // 哈希表大小(通常取大质数)

int h[N];   // 哈希桶数组,h[i] 表示哈希值为 i 的链表头
int e[N];   // 存储元素值
int ne[N];  // 存储下一个节点的索引(模拟链表指针)
int idx;    // 当前可用存储位置
变量说明
变量作用
h[N]哈希表主体,每个 h[i] 存储链表头索引
e[N]存储实际插入的元素值
ne[N]存储链表的下一个节点索引(类似 next 指针)
idx指向当前可用的存储位置

 2.2 插入操作(insert

void insert(int x) {
    int t = (x % N + N) % N;  // 计算哈希值,处理负数
    e[idx] = x;                 // 存储元素值
    ne[idx] = h[t];             // 新节点指向原链表头
    h[t] = idx++;               // 更新链表头
}
插入流程详解
  1. 计算哈希值 t

    • 使用 (x % N + N) % N 而非 x % N,确保结果非负(C/C++ 的 % 运算对负数可能返回负值)。

    • 这里N的值一般为质数,这样可以减少哈希冲突的概率

如果使用%来计算索引, 把哈希表的长度设计为素数(质数)可以大大减小哈希冲突
比如
10%8 = 2      10%7 = 3
20%8 = 4      20%7 = 6
30%8 = 6      30%7 = 2
40%8 = 0      40%7 = 5
50%8 = 2      50%7 = 1
60%8 = 4      60%7 = 4
70%8 = 6      70%7 = 0

  1. 存储元素

    • e[idx] = x:将 x 存入 e 数组。

    • ne[idx] = h[t]:新节点的 next 指针指向当前链表头。

    • h[t] = idx++:更新链表头,并移动 idx 指针。

示例:插入 14212835(假设 N=7
操作哈希值 t链表变化
插入 140h[0] → 14 → NULL
插入 210h[0] → 21 → 14 → NULL
插入 280h[0] → 28 → 21 → 14 → NULL
插入 350h[0] → 35 → 28 → 21 → 14 → NULL
h[0] → 3 (35) → 2 (28) → 1 (21) → 0 (14) → NULL

e[] = [14, 21, 28, 35, ...]

ne[] = [-1, 0, 1, 2, ...]

2.3 查询操作(query

int query(int x) {
    int t = (x % N + N) % N;   // 计算哈希值
    for (int i = h[t]; i != -1; i = ne[i]) {  // 遍历链表
        if (e[i] == x) return 1;  // 找到返回 1
    }
    return 0;  // 未找到返回 0
}
查询流程
  1. 计算 x 的哈希值 t

  2. 遍历 h[t] 的链表,检查是否有匹配的值。

  3. 找到返回 1,否则返回 0

示例

  • 查询 28

    • 计算 t = 0,遍历链表 35 → 28 → ...,找到 28,返回 Yes

  • 查询 15

    • 计算 t = 1h[1] 为空,返回 No


 3.细节流程 

       有些人可能对数组是怎么存储的,怎么把他们链接起来的有点疑惑,这里讲解用案列讲解一下

假设:

  • 哈希表大小 N = 7(为演示方便,实际代码中 N=100003

  • 初始状态:h[] 全部为 -1idx = 0

  • 依次插入元素:14212835
    (它们的哈希值均为 t = 0,因为 14%7=021%7=028%7=035%7=0)

逐步执行流程

1. 初始状态
h[]: [-1, -1, -1, -1, -1, -1, -1]  // 所有链表为空
e[]: []
ne[]: []
idx = 0
2. 插入 14
  • 计算哈希值:t = (14 % 7 + 7) % 7 = 0

  • 执行插入:

    • e[0] = 14
      e[]: [14, _, _, _, _, _, _]

    • ne[0] = h[0] = -1
      ne[]: [-1, _, _, _, _, _, _]

    • h[0] = idx = 0,然后 idx++
      h[]: [0, -1, -1, -1, -1, -1, -1]
      idx = 1

此时链表结构

h[0] → 0 (e[0]=14) → -1
3. 插入 21
  • 计算哈希值:t = (21 % 7 + 7) % 7 = 0

  • 执行插入:

    • e[1] = 21
      e[]: [14, 21, _, _, _, _, _]

    • ne[1] = h[0] = 0
      ne[]: [-1, 0, _, _, _, _, _]

    • h[0] = idx = 1,然后 idx++
      h[]: [1, -1, -1, -1, -1, -1, -1]
      idx = 2

此时链表结构

h[0] → 1 (e[1]=21) → 0 (e[0]=14) → -1
4. 插入 28
  • 计算哈希值:t = (28 % 7 + 7) % 7 = 0

  • 执行插入:

    • e[2] = 28
      e[]: [14, 21, 28, _, _, _, _]

    • ne[2] = h[0] = 1
      ne[]: [-1, 0, 1, _, _, _, _]

    • h[0] = idx = 2,然后 idx++
      h[]: [2, -1, -1, -1, -1, -1, -1]
      idx = 3

此时链表结构

h[0] → 2 (e[2]=28) → 1 (e[1]=21) → 0 (e[0]=14) → -1
5. 插入 35
  • 计算哈希值:t = (35 % 7 + 7) % 7 = 0

  • 执行插入:

    • e[3] = 35
      e[]: [14, 21, 28, 35, _, _, _]

    • ne[3] = h[0] = 2
      ne[]: [-1, 0, 1, 2, _, _, _]

    • h[0] = idx = 3,然后 idx++
      h[]: [3, -1, -1, -1, -1, -1, -1]
      idx = 4

最终链表结构

h[0] → 3 (e[3]=35) → 2 (e[2]=28) → 1 (e[1]=21) → 0 (e[0]=14) → -1

内存布局总结

数组存储内容
h[][3, -1, -1, -1, -1, -1, -1]
e[][14, 21, 28, 35, _, _, _]
ne[][-1, 0, 1, 2, _, _, _]

链表逻辑结构

哈希桶 0:
┌───┐   ┌───┐   ┌───┐   ┌───┐
│35 │ → │28 │ → │21 │ → │14 │ → NULL
└───┘   └───┘   └───┘   └───┘
  ↑
h[0]

关键点说明

  1. 头插法:新元素总是插入链表头部,h[t] 直接指向新节点。

  2. 冲突处理:所有哈希到 t=0 的元素通过 ne[] 指针链接在一起。

  3. 时间复杂度:插入操作始终是 O(1),因为只需修改头指针。

  4. 负数处理(x % N + N) % N 确保哈希值为正。

全部流程:

初始:
h[0] = -1

插入14:
h[0] → 0 (14) → -1

插入21:
h[0] → 1 (21) → 0 (14) → -1

插入28:
h[0] → 2 (28) → 1 (21) → 0 (14) → -1

插入35:
h[0] → 3 (35) → 2 (28) → 1 (21) → 0 (14) → -1

4. 哈希冲突与性能分析

4.1 哈希冲突

当不同键映射到同一哈希桶时(如 14 和 21 都映射到 t=0),拉链法通过链表存储冲突元素。

4.2 时间复杂度

操作平均情况最坏情况
插入 insert(x)O(1)O(n)
查询 query(x)O(1 + α)O(n)


5. 拉链法 vs. 开放寻址法

特性拉链法开放寻址法
冲突解决链表存储冲突元素线性/二次探测新位置
内存占用需额外指针空间无指针开销,更紧凑
查询效率稳定,受装载因子影响小受聚集现象影响大
适用场景数据量动态变化内存敏感,数据量固定

6. 完整代码示例

#include <stdio.h>
#include <string.h>
#define N 100003	//选择一个大质数作为哈希表的大小,可以减少哈希冲突的概率
/*
	如果使用%来计算索引, 把哈希表的长度设计为素数(质数)可以大大减小哈希冲突
    比如
    10%8 = 2      10%7 = 3
    20%8 = 4      20%7 = 6
    30%8 = 6      30%7 = 2
    40%8 = 0      40%7 = 5
    50%8 = 2      50%7 = 1
    60%8 = 4      60%7 = 4
    70%8 = 6      70%7 = 0
*/

//哈希表的“表头”数组h,h[i]表示哈希值为i的链表的头节点(初始化为-1表示空链表)
//e数组存储实际插入的值
//ne存储链表的下一个节点(类似链表的next指针)
//idx当前可用的存储位置(类似于动态分配的指针) 
int h[N], e[N], ne[N], idx;

//插入函数
void insert(int x)
{
	//计算哈希值t
	//这里使用(x % N + N) % N不使用x%N,是为处理x为负数的情况,确保t在[0,N-1]范围内
	int t = (x % N + N) % N;
	//插入链表
	e[idx] = x;			//存储x在e数组中
	ne[idx] = h[t];		//新节点的next指向当前链表的头节点
	h[t] = idx++;		//不断更新链表的头节点为当前新节点,并移动idx指针
}

//查询函数
int query(int x)
{
	//计算哈希值
	int t = (x % N + N) % N;
	//遍历链表h
	for (int i = h[t]; i != -1; i = ne[i])
	{
		if (e[i] == x)
		{	
			//如果存在返回1
			return 1;
		}
	}
	//如果不存在返回0
	return 0;
}

int main()
{
	//初始化哈希表,将h数组所有数据初始化为-1,表示所有链表初始为空
	memset(h, -1, sizeof(h));
	int n, x;
	scanf("%d", &n);

	while (n--)
	{
		char c;
		scanf("\n%c%d", &c, &x);

		if (c == 'I')
		{
			insert(x);
		}
		else
		{
			if (query(x))
			{
				printf("Yes\n");
			}
			else
			{
				printf("No\n");
			}
		}
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不语n

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值