Python 操作 MySQL 数据库

目录

一、 安装 Python MySQL 连接库

1. 安装mysql-connector-python

2. 安装 PyMySQL(作为替代)

二、 Python 连接 MySQL 数据库

1. 导入连接库

2. 创建数据库连接

3. 创建游标对象

4.俗行 SQL语句

5. 获取查询结果

6. 关闭连接

三、 常见的 MySQL 操作

1. 插入数据(INSERT)

2. 更新数据(UPDATE)

3. 删除数据(DELETE)

4. 查询数据(SELECT)

5. 执行多条 SQL语句

6. 使用 LIKE进行模糊查询

7. 使用JOIN 进行联合查询

四、 使用连接池

1. 连接池简介

2. 创建连接池

3. 获取连接

4. 连接池的优势

五、 事务管理

1. 开始事务

2. 提交事务

3. 回滚事务

4. 事务的隔离级别

5. 事务隔离级别总结


一、 安装 Python MySQL 连接库

在开始之前,我们需要安装 Python的 MySQL连接库。mysql-connector-python是一个官方推荐的库,用于与MySQL数据库进行交互。如果你更习惯使用其他库,PyMySQL也可以作为替代方案

1. 安装mysql-connector-python

pip install mysql-connector-python

2. 安装 PyMySQL(作为替代)

pip install pymysql

二、 Python 连接 MySQL 数据库

1. 导入连接库

首先,我们需要导入 pymysq1模块,使用它来连接 MySQL数据库并执行 SQL语句。

import pymysql

2. 创建数据库连接

我们使用 pymysq1.connect()方法来建立数据库连接。连接时需要提供MySQL服务器的地址、用户名密码和要访问的数据库名。

db= pymysql.connect(
    host="localhost",        # MySOL数据库的地址,通常是1ocalhost或IP地址
    user="root",             #数据库的用户名,通常是 root
    password="password",        # 数据库的密码
    database-"testdb")        #要连接的数据库名称

3. 创建游标对象

建立连接后,我们需要创建一个游标对象,通过它来执行SQL语句。

cursor=db.cursor()

4.俗行 SQL语句

通过游标对象的execute()方法,我们可以执行 SQL语句。在执行 SQL时,可以使用%s 占位符来避免 SQL注入攻击。

cursor.execute("SELECT* FROM users")

5. 获取查询结果

对于查询操作,fetcha11()方法用于获取所有结果,fetchone()方法用于获取单条记录。

results= cursor.fetchall()
for row in results:
    print(row)

6. 关闭连接

操作完成后,记得关闭游标和数据库连接。

cursor.close()
db.close()

三、 常见的 MySQL 操作

1. 插入数据(INSERT)

插入数据时,我们使用INSERT INTO 语句,通过 execute()方法执行插入操作。为了防止 SQL 注入攻击插入语句中的值应使用%s占位符。

cursor.execute("INSERT INTO users (name, age)VALUES (%s,%s)",("Alice",25))
db.commit()         #提交事务,保存插入的数据

2. 更新数据(UPDATE)

更新数据时,我们使用 UPDATE语句,通过 execute()方法执行。通常我们会添加 WHERE 条件,以确保只更新需要更新的记录。

cursor.execute("UPDATE users SET age =%s WHERE name = %s",(26,"Alice"))
db.commit()         #提交事务,保存更新的数据

3. 删除数据(DELETE)

删除数据时,我们使用DELETE语句,并通过 WHERE条件确保删除特定记录。

cursor.execute("DELETE FROM users WHERE name = %s",("Alice",))
db.commit()        #提交事务,保存删除的数据

4. 查询数据(SELECT)

查询数据时,使用SELECT语句。你可以使用 fetcha11()获取所有记录,或使用fetchone()获取一条记录。

cursor.execute("SELECT* FROM users")
results = cursor.fetchall()
for row in results:
    print(row)

5. 执行多条 SQL语句

对于批量插入、更新等操作,可以使用executemany()方法一次执行多条 SQL语句。

cursor.executemany(
    "INSERT INTO users(name,age)VALUES(%s,%s)",
    [("Bob",30),("charlie",35),("David",28)]
)
db.commit()     # 提交事务

6. 使用 LIKE进行模糊查询

LIKE关键字允许你进行模糊查询。你可以使用%通配符来匹配任意字符。

cursor.execute("SELECT * FROM users WHERE name LIKE %s",("%a%”,))
results = cursor.fetchall()
for row in results:
    print(row)

7. 使用JOIN 进行联合查询

在多个表之间建立关系时,J0IN关键字用于合并多个表的数据。

cursor.execute("""
    SELECT users.name,orders.amount
    FROM users
    INNER JOIN orders ON users.id = orders.user id
""")
results=cursor.fetchall()
for row in results:
    print(row)

四、 使用连接池

1. 连接池简介

连接池技术能够在高并发场景下提升数据库连接的效率。在连接池中,多个数据库连接被提前创建并放入池中,客户端通过池获取连接,而不是每次都建立新的连接。这大大减少了连接创建和销毁的开销。

2. 创建连接池

PyySQL 并不直接支持连接池,但我们可以使用 DButils 库来创建连接池。首先需要安装 DButils:

pip install dbutils
from dbutils.pooled db import PooledDB
import pymysql

# 数据库连接配需
dbconfig-{
    "host":"localhost",
    "user":"root",
    "password":"password",
    "database": "testdb"
}

# 创建连接池
connection pool= PooledDB(
    creator=pymysql,    #使用 PyMySQL作为数据库连接库
    maxconnections-5,    #连接池中最大连接数
    **dbconfig
)

3. 获取连接

从连接池中获取连接时,可以使用connection()方法。每次获取到的连接都可以直接执行数据库操作。

db connection =connection pool.connection()
cursor=db connection.cursor()

cursor.execute("SELECT * FROM users")
results = cursor.fetchall()

for row in results:
    print(row)

cursor.close()
db connection.close()     #连接会自动归还给连接池

4. 连接池的优势

  • 性能提升:连接池减少了每次数据库操作时创建新连接的开销,提高了数据库操作的效率。
  • 资源管理:连接池能够限制最大连接数,避免因过多的数据库连接导致数据库过载。
  • 更易管理:通过连接池,可以统一管理连接的生命周期,简化代码结构。

五、 事务管理

事务是由多个 SQL语句组成的一个工作单元。事务保证了数据的原子性,即所有操作要么都成功,要么都失败。

1. 开始事务

事务可以通过 START TRANSACTION 来显式开启,但一般我们通过执行 SQL语句来启动事务。

cursor.execute("START TRANSACTION" )

2. 提交事务

如果事务中的所有操作都成功,我们使用commit()方法提交事务,保存对数据库的更改。

db.commit()

3. 回滚事务

如果事务中的某些操作失败,我们可以使用ro11back()方法回滚事务,将所有更改撤销。

db.rollback()

4. 事务的隔离级别

MySQL支持四种事务隔离级别,它们定义了在并发事务执行时一个事务的操作对于其他事务的影响。隔离级别的设置越高,事务间的干扰越小,但同时可能导致性能下降。ySQL的默认隔离级别是REPEATABLE READ,具体如下:

(1) READ UNCOMMITTED(未提交读)

  • 描述:事务可以读取其他事务未提交的数据,可能导致“脏读”(Dirty Read)。这种级别下事务间的隔离性最差。
  • 应用场景:通常不推荐使用,除非对数据一致性要求不高。

使用方法:

cursor.execute("SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED" )

(2) READ COMMITTED(提交读)

  • 描述:事务只能读取其他事务已经提交的数据,避免了脏读,但仍然可能遇到“不可重复读”(Non-repeatable Read)的问题。即事务中读取的数据在两次读取时可能发生变化(另一个事务已提交了修改)。
  • 应用场景:适用于大多数常见场景,提供了一定的隔离性,同时保证了较好的性能。

使用方法:

cursor.execute("SET TRANSACTION ISOLATION LEVEL READ COMMITTED")

(3) REPEATABLE READ(可重复读)

  • 描述:事务可以保证在事务内多次读取同一数据时,其值不会发生变化。这避免了“不可重复读”的问题,但依然可能会出现“幻读”(Phantom Read),即一个事务读取的数据集在事务执行过程中发生了变化。
  • 应用场景:对于需要保证事务数据一致性的场景,例如金融系统中的余额操作等,可以考虑使用该隔离级别。

使用方法:

cursor.execute("SET TRANSACTION ISOLATION LEVEL REPEATABLE READ" )

(4) SERIALIZABLE(串行化)

  • 描述:这是最严格的事务隔离级别,事务会被执行得像串行一样,完全避免了脏读、不可重复读和幻读。然而,这种隔离级别的性能开销最大,可能导致大量的锁竞争。
  • 应用场景:适用于对数据一致性要求极高的场景,如库存管理系统、银行转账等

使用方法:

cursor.execute("SET TRANSACTION ISOLATION LEVEL SERIALIZABLE")

5. 事务隔离级别总结

  • READ UNCOMMITTED:允许脏读,最低的隔离级别,性能最好,但容易出现数据不一致的情况。
  • READ COMMITTED:解决了脏读问题,但可能出现不可重复读。
  • REPEATABLE READ:解决了脏读和不可重复读问题,但可能出现幻读。
  • SERIALIZABLE:解决了所有问题,但性能最差,可能导致事务长时间等待。

在选择事务隔离级别时,需要根据应用的具体需求平衡数据一致性和性能。如果事务数据不频繁冲突可以选择较低的隔离级别以提升性能;而对于数据一致性要求极高的场景,则应选择更高的隔离级别,尽管这会带来性能上的损失。

在MySQL中,事务的认隔离级别是REPEATABLE READ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值