自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(762)
  • 收藏
  • 关注

原创 普通程序员如何成功转行AI大模型?五大关键步骤详解,非常详细!!!

人工智能领域,尤其是大模型方向,正吸引越来越多的程序员转型。对于普通程序员来说,转向AI大模型需要掌握数学基础(如线性代数、微积分)、编程语言(特别是Python),以及机器学习理论(包括监督学习、深度学习等)。此外,数据处理技能、框架工具(如TensorFlow、PyTorch)和项目实践经验也至关重要。通过参与在线课程、开源项目和个人作品集的构建,程序员可以逐步深入自然语言处理(NLP)或计算机视觉等专业领域。持续学习和社区参与也是保持竞争力的关键。文末提供了大模型学习资料包,帮助零基础小白快速入门。

2025-05-15 21:51:43 576

原创 AI大模型之争:通用性与垂直性,哪个更具优势?

AI大模型在人工智能领域展现出巨大潜力,主要分为通用大模型和垂直大模型。通用大模型如GPT、BERT等,具有广泛的适用性和强大的泛化能力,适用于多种任务;而垂直大模型则专注于特定领域,如医疗、金融,提供更精准的解决方案。两者各有优势,通用大模型在技术引领和灵活性上表现突出,垂直大模型则在专业性和定制化服务上更具竞争力。实际应用中,两者可以互补,通用大模型作为基础平台,垂直大模型进行二次开发,满足特定需求。然而,大模型的发展也面临算力、数据和算法等挑战,未来可能出现结合两者优势的混合型模型,以应对多样化的AI

2025-05-15 17:01:53 772

原创 AI大模型的就业岗位及薪资(附学习指南)

随着AI技术的快速发展,大模型(如GPT、BERT等)已成为推动人工智能创新的核心力量,预计将带来大量就业机会。相关岗位包括AI模型研发工程师、数据科学家、算法工程师、AI应用开发工程师、AI平台架构师、AI产品经理和AI测试工程师等。学习大模型技术不仅能提升个人在数据处理、分析和决策制定方面的能力,还能增强就业竞争力,为创新创业奠定基础。大模型在教育、医疗、金融、制造等领域的应用日益广泛,推动行业创新。对于零基础学习者,系统性的学习资料和规划将有助于快速入门并掌握大模型技术。

2025-05-15 15:43:32 972

原创 从普通程序员到高薪专家:如何在大模型领域实现薪资翻倍?

文章探讨了普通程序员如何成功转型为大模型领域从业者,并实现薪资翻倍的目标。首先,强调了打好基础的重要性,建议学习机器学习和深度学习的基础知识。其次,鼓励通过实践项目来提升技能,并建议关注行业动态,参与技术交流。此外,强调了团队合作的重要性,因为大模型项目通常需要跨专业协作。文章还提供了大模型学习资料,包括学习路线、实战案例、视频和PDF资源,帮助零基础小白系统性地学习大模型技术。最后,文章鼓励程序员通过努力学习和实践,成功转型并实现职业发展。

2025-05-13 15:51:39 754

原创 2025年强烈推荐:30+程序员转行大模型:一名35岁老程序员的真实经验

大家好,我叫李华,一名10年的资深程序员,在经历了10多年传统软件开发工作后,在35岁时毅然决定投身到大模型这一新兴领域。我的故事希望能为那些正在考虑职业转型的技术人员提供一些启示。

2025-05-13 15:24:23 1196

原创 程序员为什么要学习AI大模型?

在人工智能技术的推动下,AI大模型已成为软件行业发展的核心动力。本文从程序员视角探讨了AI大模型的定义、应用及其重要性。AI大模型通过处理海量数据,展现出强大的智能能力,广泛应用于自然语言处理、图像识别、推荐系统和智能制造等领域。程序员学习大模型技术不仅能提升技术能力、拓宽视野,还能促进跨界合作与创新思维。文章还提供了大模型学习资料,帮助程序员从零基础系统性地掌握大模型技术,推动职业发展。

2025-05-13 15:01:21 859

原创 深度探索 DeepSeek 微调:LoRA 与全参数微调实战指南

DeepSeek 作为强大的大模型,虽然在通用任务上表现出色,但在特定领域(如医学、法律、金融等)可能无法满足需求。为了提升模型在特定任务上的表现,本文介绍了两种微调策略:LoRA(低秩适配)和全参数微调。LoRA 适用于计算资源有限的场景,通过低秩矩阵更新部分权重,减少显存占用,适合小样本微调;全参数微调则适用于计算资源充足、任务复杂的场景,通过更新所有参数实现最佳效果,但训练成本较高。文章还提供了详细的代码示例,帮助开发者高效定制 DeepSeek 模型,并附有大模型AGI-CSDN独家资料包。

2025-05-13 14:40:35 783

原创 工业大模型全景解析:53个大模型案例深度探索

工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。目前,市场上已涌现出各种工业大模型。按照发布主体可划分为· 头部工业企业拥有海量专业数据、应用场景丰富,,引入业界领先的通用大模型,在此基础之上整合行业知识与特征进行训练和调优;通用大模型投入数据量大、算力成本高、算法难度大,一般由头部AI/互联网公司构建;

2025-05-12 16:06:13 921

原创 如何构建企业级的AI大模型?只看这篇就够了

企业级AI大模型的落地应用是一个系统性工程,涉及多个关键步骤。首先,企业需从众多模型中选择并评估最适合的模型,确保其满足业务需求。接着,利用企业内部数据进行模型微调和训练,提升其在特定场景中的表现。数据准备阶段包括数据收集、清洗、标注和增强,以确保数据质量。模型训练完成后,需进行优化和反馈,持续改进模型性能。最后,模型部署时需考虑安全性、可扩展性和可维护性,确保其稳定运行。整个过程是一个循环迭代的系统,帮助企业不断优化大模型的性能和效果。

2025-05-12 15:04:06 838

原创 AI时代,一文彻底搞懂天天被提到的Agent是什么?

AI Agent(人工智能代理)是一种能够感知环境、自主决策并执行动作的智能实体,具备自主性、反应性、目标导向和学习能力。与传统AI系统不同,AI Agent不仅能回答问题,还能主动完成复杂任务。其核心组件包括大模型(提供语言理解与推理能力)、任务规划(分解与调度任务)、工具使用(与外部工具交互)和记忆(存储经验与知识)。AI Agent的工作循环包括接收目标、观察环境、规划行动、执行行动、观察结果、调整策略,直至目标达成。这种自主性和反应式架构使其能够像人类一样通过试错优化行动,而非简单执行预设指令。

2025-05-12 14:47:52 1128

原创 从大模型(LLM)、检索增强生成(RAG)到智能体(Agent)的应用

大型语言模型(LLM)、检索增强生成(RAG)和智能体(Agent)是推动人工智能技术发展的关键。LLM提供基础的语言理解和生成能力,RAG结合特定知识库生成更准确的输出,而智能体则综合运用LLM和RAG等技术,在复杂环境中执行任务。LLM如GPT系列基于Transformer架构,通过大规模文本数据预训练,具备强大的自然语言处理能力。OpenAI的GPT-4工程化应用包括免费版、Plus版和团队版,提供对话、图文生成及实时知识获取等功能。GPTs插件允许用户结合自有指令、知识库或API服务,创建自定义模型

2025-05-10 22:44:45 985

原创 Agent、RAG与LangChain:AI领域不可或缺的‘三位一体

在人工智能领域,Agent、RAG和LangChain是三个关键技术,共同构建了智能系统的基础。Agent作为智能代理,能够自主感知环境并执行任务,如客服助手;RAG(检索增强生成)通过结合信息检索和语言生成,提升大模型回答的准确性,减少“幻觉”问题;LangChain则是一个编程框架,帮助开发者高效整合多种数据源和工具,简化应用开发。三者协同工作,能够实现智能问答、内容生成等功能,尽管面临数据处理效率和信息更新等挑战,但它们在构建智能系统中展现出巨大潜力。文末还提供了大模型学习资料,帮助读者深入理解和应用

2025-05-10 21:47:12 928

原创 开源一个RAG大模型本地知识库问答机器人-ChatWiki

ChatWiki是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库AI问答系统,旨在帮助企业快速搭建专属AI问答系统。其特点包括支持多种主流模型的一键接入、自动数据预处理、直观的可视化界面设计,以及适配不同业务场景的多渠道支持(如H5链接、微信公众号、小程序等)。系统通过导入企业知识库,确保AI机器人严格按照企业要求回答问题,避免信息泄露和错误响应。部署ChatWiki需要一台具备联网功能的Linux服务器,最低配置为2核CPU和4GB内存,并通过Docker进行安装。ChatWiki的

2025-05-10 17:54:19 1040

原创 用通俗易懂的方式讲解:12 个大模型 RAG 痛点及解决方案

我们探讨了开发RAG管道中的12个痛点(来自论文的7个和额外的5个),并为所有这些问题提供了相应的解决方案。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-05-08 15:33:12 610

原创 读懂RAG这一篇就够了,万字详述RAG的5步流程和12个优化策略

在本文中,我们一起深入探索了RAG(Relevance- Generation)系统的各个方面,从初步的文档准备到复杂的多代理检索策略,希望得到了对RAG一个全面且深入的认识。这个旅程虽然充满挑战,但同样展现了RAG系统在处理大规模信息检索和理解任务时的巨大潜力。通过细致地优化查询问题,灵活运用多级索引和路由技术,以及实施先进的检索策略,我们能够显著提高系统的效率和准确性,从而更好地满足用户的需求。RAG系统的未来发展令人充满期待,随着技术的不断进步,我们有理由相信它将在各行各业中发挥越来越重要的作用。

2025-05-08 15:07:52 953

原创 RAG知识库:一文带你速通RAG、知识库和LLM

定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。

2025-05-08 14:34:13 1098

原创 本地部署大模型与基于RAG构建私有知识库,一步到位!

以上就是本地大模型部署和基于RAG方案的私有知识库搭建的基本操作。除此之外,还有更多丰富有趣的功能等待探索。如今大模型遍布各行各业、各个领域,基于RAG方案的私有知识库技术也逐渐发展,成为提升个人工作效率与创造潜能的新风尚。本地部署模型意味着用户能在自己的设备上享受即时响应的智能辅助,无需依赖云端,既保护了个人数据隐私,又确保了操作的低延迟与高可靠性。结合RAG方案的私有知识库,则让每位用户能够构建专属自己的知识宇宙。

2025-05-08 14:16:45 1315

原创 RAG与知识库搭建,手把手教你构建RAG系统

自从发现可以利用自有数据来增强大语言模型(LLM)的能力以来,如何将 LLM 的通用知识与个人数据有效结合一直是热门话题。关于使用微调(fine-tuning)还是检索增强生成(RAG)来实现这一目标的讨论持续不断。检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-07 17:02:49 931

原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库(附教程)

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-07 15:44:55 1227

原创 AI 时代之下,如何构建企业专属的智能知识库?

想象一个由人工智能管理的强大数据库,它不仅存储信息,还能理解、分析和运用这些信息。这就是AI知识库——一个能够自我学习、不断进化的智能系统。

2025-05-07 14:56:32 861

原创 搭建本地大模型和知识库最简单的方法

每款大模型都有不同版本,根据自己的机器来选择,根据官网的文档也说明了,一般7B的模型至少需要8G的内存,13B的模型至少需要16G内存,70B的模型至少需要64G内存。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;不管你是在PC上跑大模型,在Mac上跑大模型,还有在树莓派上跑大模型,

2025-05-06 16:47:05 632

原创 手把手教你轻松创建个人AI知识库,非常详细收藏我这一篇就够了

虽然对于大多数人来讲,由于我们的电脑配置等原因,部署本地大模型并且达到很好的效果是很奢侈的一件事情。但是这并不妨碍我们对其中的流程和原理进行详细的了解有任何问题,欢迎评论区与我交流!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。

2025-05-06 16:01:31 1040

原创 10分钟在笔记本电脑安装DeepSeek R1大模型以及个人知识库

前几天在文章“DeepSeek与支付行业融合的破局思路”中有提到“先行动起来”,今天给大家一个10分钟在笔记本电脑搭建DeepSeek R1大模型以及个人知识库。我用的电脑是苹果的Macbook,windows也差不多,只是留意安装包不要下错就行。

2025-04-28 17:15:46 714

原创 一份在阿里内网悄悄流传的大模型面试真题!(2025年最新)

随着人工智能技术的迅猛发展,等领域的岗位越来越受欢迎,而对于大型模型技术的掌握成为了这些岗位的标配。但目前公开的大模型资源还是很少很少,面试真题就更不用多说了。为了让大家能够应对大模型面试,整理了这份大模型面试真题及答案,对新手如何入门算法岗位、备战面试以及面试常见考点的详尽指导。内容太多不一一列举。

2025-04-28 16:46:55 634

原创 大模型面试八股含答案,非常详细收藏我这一篇就够了

前面在4.中提到了Lora,我也曾在别的回答中提过Lora真是本世纪最美女名,因为真的是个人微调的一大福音。如果你想细致了解,可以看看这篇CW不要無聊的風格:当红炸子鸡 LoRA,是当代微调 LLMs 的正确姿势?我在这里也具体来讲讲:首先肯定是要搬上来这张图的:

2025-04-28 16:11:46 1030

原创 AI大模型本地部署详细教程,私有化部署体验 Dify!!

Dify是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-04-28 15:55:12 1134

原创 API调用大模型如此方便,为何企业还要私有化部署大模型?

直接通过网页API调用大模型确实方便快捷,尤其对于那些追求效率、希望快速集成AI功能的项目来说,云端服务是个不错的选择。但为啥有些企业和个人还琢磨着要把这些大模型搬到自家服务器上,搞个本地部署呢?想象一下,如果你的公司处理的是客户敏感信息或者商业机密,直接把数据上传到云端处理,总有点担心信息外泄吧。本地部署就能让数据在内部流转,相当于给敏感信息加了个保险箱。从国家层面来说,为什么国外ChatGPT这么厉害了,国家还要花大力气搞国产大模型?因为大模型技术的飞速发展,会让其成为了。

2025-04-27 15:02:59 407

原创 2024年医疗大模型如何发展?私有化部署是重要方向

导读一方面,大模型在医疗场景应用需兼顾安全性与专业性,可通过数据清洗、标注和验证等控制数据质量;另一方面,大模型的计算需要大量的算力作为支撑,轻量化、本地化部署的大模型将成为重要发展方向。2023年被很多人称为“医疗大模型的元年”,国内外均有大量厂家将大语言模型应用于医疗健康领域。据统计,截至2023年10月,我国累计公开的大模型数量已经达到238个,垂直类大模型达到103个。而2-9月,我国发布的医疗大模型近50个,涉及智慧诊疗、医疗文本处理、药物研发和学术科研等多个方面。

2025-04-27 14:44:23 809

原创 一篇搞懂DeepSeek:三种部署方案+版本对比,普通用户这样选!

DeepSeek的爆火,不仅是技术的胜利,更是国产AI生态的突破。无论你是小白还是极客,总有一种姿势能解锁它的潜力!赶紧试试硅基流动方案,体验“人均AGI”的快乐吧!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。

2025-04-27 14:25:24 947

原创 大模型基础知识:什么是LLM?非常详细,看这一篇就够了!

自从2022年12月 ChatGPT 横空面世以来,AI 领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮 AI 热潮相比于之前的 AI,最大的区别在于:生成式。本文主要介绍大语言模型(Large Language Model,简称LLM)。前排提示,文末有大模型AGI-CSDN独家资料包哦!通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。

2025-04-27 14:08:11 1165

原创 大模型LLM,微调经验分享全面总结

大型语言模型横行,之前非常焦虑,现在全面拥抱。目前也有很多开源项目进行大模型微调等,笔者也做了一阵子大模型了,特此来介绍一下ChatGLM-6B模型微调经验,并汇总了一下目前开源项目&数据。笔者与很多人微调结论不同,本人在采用单指令上进行模型微调,发现模型微调之后,

2025-04-26 09:15:00 1197

原创 学大模型必看!手把手带你从零微调大模型!

微调大模型需要非常高的电脑配置,比如GPU环境,相当于你在已经预训练好的基础上再对大模型进行一次小的训练。但是不用担心,本篇文章会使用阿里魔塔社区提供的集成环境来进行,无需使用你自己的电脑配置环境。你只需要有浏览器就可以完成。本次微调的大模型是零一万物的 Yi 开源大语言模型,当然微调其他大模型的过程和原理也有差不多。这里说明一下,阿里魔塔社区对于新用户提供了几十小时的免费GPU资源进行使用,正好可以来薅一波羊毛,学习一下大模型的微调。话不多说,直接开始。

2025-04-26 09:00:00 694

原创 保姆级实战教程:安装部署私有化大模型,并投喂数据

想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。酷~~~首先,我们会用到Ollama,功能是运行大模型。Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。

2025-04-25 15:57:41 1326

原创 小白教程:从0开始离线部署私有大模型,很详细!

大模型的使用必将包含以下三个阶段:1. 直接使用,用于提效2. 使用 API 定制应用程序3. 离线部署+微调,实现私有数据模型化第一个阶段已经完成,作为技术者应该关注第二、三阶段。1. 环境安装和配置我们以清华大学开源的 ChatGLM-6B 语言模型为例。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。

2025-04-25 15:30:27 774

原创 保姆级实战教程:安装部署私有化大模型,并投喂数据

想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。酷~~~首先,我们会用到Ollama,功能是运行大模型。Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。

2025-04-25 15:11:09 593

原创 大模型实战 :使用大模型与 RagFlow 搭建本地私有化金融知识库

当我们有着数千上万本证券研究报告,即使使用标题关键字搜索,依旧存在着不少对应的研报,此时只能一本一本地去阅读去筛选,十分消耗脑力,那么能不能使用大模型来代替我们的操作,让它给出相对完整的答案并给出引用,我们直接看这些引用的文章来获取细节即可。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-04-25 14:50:14 998

原创 一文彻底搞懂大模型 - Agent(智能体)

电影《钢铁侠》中的智能助手J.A.R.V.I.S.(Just A Rather Very Intelligent System,即“只是一个相当聪明的系统”)为我们描绘了一个未来AI Agent的雏形。前排提示,文末有大模型AGI-CSDN独家资料包哦!J.A.R.V.I.S.,作为托尼·斯塔克(钢铁侠)的得力助手,不仅拥有强大的数据处理能力,还能精准理解并执行主人的指令,甚至能在关键时刻提供关键建议。从这位虚拟助手的身影出发,基于LLM的AI Agent,它们正逐步从银幕走进现实,成为我们生活与工作中不可

2025-04-24 16:22:48 1123

原创 【2025大厂AI大模型面试题】一文搞定面试准备!非常详细!收藏我这一篇就够了!

在2025年AI大模型的面试中,常问的问题以及答案可能会涵盖多个方面,包括AI大模型的基础知识、训练过程、应用、挑战和前沿趋势等。由于我无法直接附上174题的完整面试题库及其答案,我将基于提供的信息和当前AI大模型领域的热点,给出一些常见的问题和答案示例。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-04-24 15:58:22 828

原创 大模型面试常见问题及详细解答,三天背完,拿下大厂offer!

注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。

2025-04-24 15:41:01 811

原创 20道大模型经典问题及答案:助你成功通过面试!

大型语言模型(LLM)是一种通过大量文本材料训练的人工智能系统,能够像人类一样理解和生成语言。通过使用机器学习技术识别训练数据中的模式和关联,这些模型能够提供逻辑上和上下文上适当的语言输出。

2025-04-24 15:26:51 959

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除