- 博客(810)
- 收藏
- 关注
原创 大模型Agent核心模块、技术实现与业务落地指南
我们可以将Agent智能体比作一个自动执行任务的小助手。可以根据人的需求执行一些特定的任务,是“数字员工”智能体可以简单理解为“用大模型操控工具完成任务”
2025-08-14 19:09:07
656
原创 AI应用如何落地?首先不要卷通用大模型
目前,国产工业大模型不断发展,在部分工业环节已实现初步落地,取得了一定进展。同时,工业规律捕捉难、数据质量参差不齐、专业细分场景应用模式零散、成本投入高等痛点问题突出,导致工业大模型应用仍处在初级水平。
2025-08-14 19:01:02
556
原创 2025年AI大模型岗面试面经|常见面试题130道
主流的开源大模型体系有哪些,并简要介绍它们的特点?这个问题考察面试者对当前大模型生态的了解,包括如 Transformer-based 模型(如 BERT, GPT 系列)、T5、Switch Transformer 等,以及它们的架构特点和应用场景。2、解释 prefix LM 和 causal LM 的区别,并给出实际应用案例。
2025-08-14 18:57:50
272
原创 大模型全解指南:从零开始手把手微调大模型,不得不看的全面教程
本文手把手带你从零微调大模型。大模型微调复杂且技术难度高,本文仅带你走一遍微调过程,不涉过多技术细节,希望助你了解微调流程 。
2025-08-11 19:11:34
589
原创 一文梳理大模型微调:P-Tuning、Prefix Tuning、Adapter、LoRA
微调通过在大模型上进行针对性、细致化的调整,有效提升了模型的性能,使其在特定任务中表现的更加准确、高效。同时,微调增强了模型的泛化能力,让模型在面对新数据时仍能保持良好的效果,适应复杂多变的应用场景。更重要的是,微调推动了大模型相关技术的创新与发展,为人工智能领域带来了新的突破和机遇,具有广泛的应用前景和重要的战略意义。
2025-08-11 19:08:42
1008
原创 认识RAGFlow:从检索到生成的完整AI解决方案
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。
2025-08-04 21:46:20
587
原创 【大模型RAG】:基于RAGFlow搭建一个员工智能助理
最近体验了一下RAGFlow的RAG能力,体验下来,它给我的感觉总结两点:1)知识检索方面能力很强;2)Agent工作流搭建很反人性,跟Coze或者Dify比,有点复杂。
2025-08-04 21:44:17
924
原创 搭建大模型知识库流程,以及基于langchain实现大模型知识库案例
大模型主要面临三个问题:垂直领域内的知识不足大模型知识有时间限制大模型幻觉问题
2025-08-01 11:58:04
671
原创 超全解析!大模型面试宝典60题
我在面试候选人和参加业内研讨会时,常常发现很多人有大量实战经验,但对模型的基本原理知之甚少,我系统梳理了大模型领域常见的面试题,其中的大多数问题可以直接找到答案,部分进阶问题可以从本书的参考文献或网络上的最新论文中找到答案。希望所有的朋友都能够带着这些问题阅读本文。
2025-08-01 11:53:27
654
原创 RAG越来越不准?一文详解元数据与标签的系统优化方法(附完整流程图+实用提示词)
元数据、标签和知识目录,到底该怎么用,RAG效果才能真正提升? 如何设计流程,让你的知识库既精准、又全面,还能灵活应对复杂需求?
2025-07-31 11:22:24
810
原创 一文带你了解RAG(检索增强生成) | 概念理论介绍+ 代码实操
大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分域时,通用大模型就会面临专业知识不足的问题。相对于成本昂贵的“Post Train”或“SFT”,基于RAG的技术方案往成为一种更优选择。本文从RAG架构入手,详细介绍相关技术细节,并附上一份实践案例。
2025-07-31 11:17:49
816
原创 【大模型推理优化】缓存优化,性能最高提升7倍?
AI技术一路发展至今,推理优化是一个永存的话题,尤其是面临算力有限的情况下,如何将有限的计算资源利用最大化,是需要持续努力去实现的。今天我们来探讨一下大语言模型(LLM)推理缓存优化技术的演进和未来展望。本文主要进行原理性的探究,下一期会有相关的落地实践方案。
2025-07-18 11:15:10
1082
原创 知识库的五种类型,如何从个人作战转成企业赋能
咖啡吧里,有人刷着维基百科查历史事件;工作室中,设计师在个人笔记库翻找灵感素材;项目小组,协同文档正实时跳动更新——这些场景的背后,藏着知识库的不同呈现方式,没错,知识库并非千篇一律,对于不同的场景与需求,它存在不同的类型。
2025-07-15 11:35:21
742
原创 当AI浪潮席卷而来,企业如何让知识库从“资料仓库”进化为“智慧引擎”?
事实上,国内外企业在使用AI过程中出现错误的问题极其普遍。这些问题都揭示了通用AI的局限性:在需要高度专业化和精准度的企业场景中,缺乏内部数据支撑的通用模型往往难以胜任。换句话说,企业需要的不仅仅是“能回答问题”的AI,更是能够深入理解企业私域知识、提供精准安全解答的“智慧大脑”。而构建一个企业大脑,首当其冲就是要建立一个能用、好用的企业级知识库。
2025-07-15 11:26:30
701
原创 【大模型开发实战篇】多模态之图片识别
在人工智能领域,模态指的是数据的不同形式或类型,例如文本、图像、音频、视频等。多模态则意味着模型能够处理和理解多种不同模态的数据。大模型的多模态指的是那些能够处理和理解多种模态数据的大型人工智能模型。这些模型通常基于深度学习技术,通过学习不同模态数据之间的关联和规律,从而实现更强大的功能。
2025-07-10 16:41:01
1286
原创 一文让你读懂大模型微调 (附完整代码)
网络上关于大模型“微调”的各种解释五花八门,都不太系统,个人系统梳理了一下,并在本篇文章对指令微调从代码层面进行详细解释,供各位参考。
2025-07-10 16:13:38
916
原创 LangChain凭什么火?他的核心模块都是什么?
当ChatGPT、QwenLM、DeepSeek等大语言模型(LLM)横空出世时,开发者们立刻意识到:LLM不是终点,而是构建智能应用的“大脑”。但要让这个“大脑”真正解决实际问题,还需要解决三个关键痛点:
2025-07-08 20:03:30
1145
原创 LangChain不香了?一线程序员硬核博文剖析LLM应用开发原则
2023年是属于LLM初创公司的一年,也是属于LangChain的一年。这个发布于2022年10月的开源框架可以支持开发者构建由LLM驱动的应用程序,目前依旧是社区中一种不可忽视的开发范式。更具体地说,基于LLM构建应用程序的过程有点像在搭积木。即使模型本身的能力已经很强大了,我们依旧需要其他的组件和工具才能更好发挥其潜力。比如聊天模型、提示模板、文本嵌入模型、文本分割器、文档加载器、检索器、向量存储等,这些工具的不同的搭配组合能够构建出各种的应用链,满足RAG、Agent、存储&索引、信
2025-07-08 19:56:48
812
原创 智能体项目案例演示:8分钟学会搭建智能体、知识库!
AI是公司的一批新员工,并且没有分工分岗,你每次布置任务的时候,都要跟他讲一遍公司背景、产品介绍以及任务注意事项,很烦。智能体就是你给每个AI分工,你对员工A讲一遍公司行政规范以及日常工作要求,员工A就成了一名优秀的行政,以后行政类的工作你一句话他就秒懂;然后你对B讲一遍公司产品介绍以及销售技巧,B就成了一名优秀的业务,以后随便给他一个产品,他就能给你做专业的产品讲解。
2025-07-07 11:34:53
974
原创 智能体本地知识库怎么用?5个靠谱行业案例大总结
最近不少朋友在用搭建智能体,都问我一个问题:“有没有什么典型的行业案例?我想看看别人都怎么用‘本地知识库’搞事情的。”今天给你总结一下我近期看到的 5 个非常实用的本地知识库 + 智能体应用场景,也许能给你点启发。
2025-07-07 11:12:31
1122
原创 零代码打造高效车型Lora打标流水线:n8n+图像识别大模型批量图片标签自动生成
在AI训练领域,尤其是LORA 图像等细分模型的训练,对高质量、结构化的图片标签数据有极高要求。车型 LORA 的打标标签,有独立的要求:每一个图片的标签结果需要有一个与图片名称一致的 txt 文档。
2025-07-03 19:37:13
1204
原创 随手一拍,AI告诉你答案:多模态大模型的5个图片识别案例分享
大模型支持多模态以后,带来了更多的应用场景,今天我们以图片识别为例,给大家介绍五个日常用例,目的是扩展思路,提高效率。我是基于Qwen3.0模型,它是上个月发布的多模态大模型,之前的文章里介绍了它的生图功能,实际上它的图片识别能力更强一点。文章最后也会列出来国内目前可用的各种多模态大模型。
2025-07-03 19:34:42
1137
原创 2025年,AI大模型在企业场景走到哪了?
企业部署人工智能(AI)已从试验性项目转变为战略性行动。AI 预算逐渐常态化,模型选择日益多元化,采购流程也实现了标准化,AI 应用正系统性地落地实施。尽管产业需求和企业需求呈现出碎片化特征,但这种碎片化正是企业积极拥抱的方向。一些关键厂商正在脱颖而出,企业也越来越多地选择成品应用来加速落地。AI 市场的形态正逐渐接近传统软件,但其变化节奏和复杂性却与传统软件完全不同,这是 AI 独有的发展节奏。
2025-07-02 20:12:15
862
原创 2025 压箱底的 MCP 推荐!效率翻翻!
由于最近一直在用 Cursor 开发,也用到了很多的 MCP,所以想着今天给大家推荐一些我自己用过且在用的一些宝藏 MCP!
2025-07-02 20:09:11
872
原创 读懂大模型高效微调:从Soft Prompts到 QLoRA的技术跃迁
我们将高效微调方法粗略分为三类:• Additive(增加额外参数)• Selective(选取一部分参数更新)• Reparametrization-based(引入重参数化)。
2025-07-01 19:27:03
996
原创 LangChain教程——LangChain基本使用法
LangChain是一个用于开发由大型语言模型 (LLM) 驱动的应用程序的框架,帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序。LangChain库主要由以下几个不同的包组成:langchain-core:基础抽象和LangChain表达语言;langchain-community:第三方集成,主要包括langchain集成的第三方组件;langchain:主要包括链(chain)、代理(agent)和检索策略;
2025-07-01 19:07:52
885
原创 【大模型微调】日志监控配置与模型量化分享
LLaMA-Factory 的 Webui 仅生成训练损失的曲线图,如需查看更详细训练情况监控信息,可使用 SwanLab、TensorBoard、Wandb。
2025-06-30 18:40:36
737
原创 Qwen3-Embedding:原理解读和检索场景测试
2025.6.6,通义千问团队发布了 Qwen3-Embedding 和 Qwen3-Reranker 系列。两组模型一块训练发布,本文侧重于前者进行分析和测试。
2025-06-30 18:38:23
884
原创 搞大模型等于洗数据?谈LLM的数据工程
最近1年研究大模型,有个很不好的现象,大家都认为做大模型,认为只要喂数据就行,甭管数据噪声。CV计算机视觉时代,需要人工标注每一个图片,分类检测分割,标注数据都需要97%以上准确率;有多少智能就需要多少人工。计算机视觉的鼻祖李飞飞,就是靠人工标注ImageNet 300M数据集,才走进大众视野。
2025-06-27 20:11:19
788
原创 大模型算法架构:DeepSeek技术演进及剖析
随着 ChatGPT 迅速走红,这两年大家在日常工作中使用 LLM 进行的场景越来越多。本系列将针对主流算法架构进行讲解。
2025-06-26 19:44:52
1033
原创 国产大模型高考出分了:裸分683,选清华还是北大?
Seed1.6延续了Seed1.5在稀疏MoE(混合专家模型)领域的技术积累,采用23B激活参数与230B总参数规模进行预训练。其预训练过程通过三个阶段实现多模态能力融合与长上下文支持:
2025-06-26 19:42:31
823
原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库
RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。
2025-06-25 10:30:25
671
原创 大模型秘籍!小白也可以部署私有化大模型知识库!
在当今的人工智能浪潮中,大型语言模型(LLM)凭借其出色的文本处理和理解能力,已经成为了AI技术领域的重要组成部分。然而,商业化的LLM往往价格不菲,且存在隐私问题,这限制了广大研究者和开发者的创新与实验空间。幸运的是,开源社区如 Ollama 提供了高质量的替代方案,使得更多的用户和开发者能够便捷地探索和利用大型语言模型的强大功能。
2025-06-24 11:30:30
1055
原创 2025年超全大模型常见面试题(附答案),超详细!!
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:
2025-06-24 11:19:33
909
原创 我们为什么要用本地大模型?本地大模型入门指南!
大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。
2025-06-23 10:33:57
1101
原创 企业大模型知识库:解决企业知识管理与应用难点
大部分企业的知识管理有三个不足:缺乏长期规划、缺乏组织机制和文化、缺乏智能化,大模型+知识库的体系建设,从知识管理的底层切入,帮助企业探索多场景的知识应用形态,提升企业知识应用价值。
2025-06-23 10:32:38
774
原创 大语言模型与小语言模型之争,对比分析及启示
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。
2025-06-21 19:09:15
1129
原创 什么是大模型应用工程师?他们的就业前景如何?薪资待遇又怎样?
大模型应用工程师是专注于开发、部署和优化大型机器学习模型的专业人员。他们负责将大模型应用于实际场景,解决具体问题,提升业务价值。大模型应用工程师的工作通常涉及数据处理、模型训练、性能调优和系统集成等多个方面。研究和开发大型机器学习模型:包括但不限于深度学习、自然语言处理和计算机视觉等领域的模型。设计和实现高效的算法:优化模型性能和资源消耗,确保模型能够在实际应用中快速、准确地运行。与数据科学家和工程师合作:处理和分析大规模数据集,为模型训练提供高质量的数据支持。跟踪最新的 AI 研究进展。
2025-06-21 18:33:50
1032
原创 大模型超详细盘点!常用的大模型及其优缺点、有潜力的大模型、国内大模型行业落地的现况、国内大模型优势、挑战与前景
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。
2025-06-19 18:49:08
1472
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人